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Coulomb correlations in the honeycomb lattice: Role of translation symmetry
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The effect of Coulomb correlations in the half-filled Hubbard model of the honeycomb lattice is studied within
the dynamical cluster approximation (DCA) combined with exact diagonalization (ED) and continuous-time
quantum Monte Carlo (QMC), for unit cells consisting of six-site rings. The important difference between this
approach and the previously employed cluster dynamical mean-field theory (CDMFT) is that DCA preserves the
translation symmetry of the system, while CDMFT violates this symmetry. As the Dirac cones of the honeycomb
lattice are the consequence of perfect long-range order, DCA yields semimetallic behavior at small on-site
Coulomb interactions U , whereas CDMFT gives rise to a spurious excitation gap even for very small U . This
basic difference between the two cluster approaches is found regardless of whether ED or QMC is used as
the impurity solver. At larger values of U , the lack of translation symmetry becomes less important, so that
the CDMFT reveals a Mott gap, in qualitative agreement with large-scale QMC calculations. In contrast, the
semimetallic phase obtained in DCA persists even at U values where CDMFT and large-scale QMC consistently
show Mott-insulating behavior.
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I. INTRODUCTION

The possible existence of a spin-liquid phase on the hon-
eycomb lattice has recently attracted considerable attention.
Meng et al.1 investigated the Hubbard model for this system
at half filling, using large-scale quantum Monte Carlo (QMC)
calculations for clusters containing up to 648 sites. Careful
finite-size extrapolations indicated semimetallic behavior for
on-site Coulomb interactions in the range U � 3.5t (t is the
nearest-neighbor hopping) and an antiferromagnetic insulator
for U � 4.3t . The intermediate range 3.5t � U � 4.3t then
corresponds to a Mott phase without long-range order, the
hallmark of a spin liquid. These findings were, however,
disputed by Sorella et al.2 who performed similar QMC
calculations for even larger clusters including up to 2592 sites.
The new results showed a considerably reduced spin-liquid
phase, confined at most to the narrow window 3.8t � U �
3.9t .

The effect of nonlocal Coulomb correlations on the hon-
eycomb lattice was also studied within the cluster extension
of dynamical mean-field theory3 (CDMFT). Wu et al.4 used
continuous-time quantum Monte Carlo5 (CTQMC), whereas
Liebsch6 employed a multiorbital-multisite extension7,8 of
finite-temperature exact diagonalization9 (ED) as impurity
solver. Despite the fact that in the ED CDMFT calculations
it was possible to include only a relatively small bath (six
bath levels per six-site ring unit cell), the cluster self-energy
components were found to be in nearly quantitative agreement
with the CTQMC CDMFT results. (For a detailed comparison
see Fig. 25 of Ref. 10.) In particular, for U ≈ 5t both schemes
revealed a Mott phase, with an excitation gap � ≈ 0.6t , in
close agreement with the one found by Meng et al.1 With
decreasing U , the CTQMC results at temperatures T � 0.05t

indicated the closing of the Mott gap near U = 3.8t ,4 while the
ED results at lower temperature T = 0.005t revealed a weak
insulating contribution to the self-energy at the Dirac points
at arbitrarily low U .6 For U � 3t the small gap associated
with this self-energy was, however, difficult to resolve in the

spectral distributions due to the temperature rounding of the
gap edges.

Analogous ED CDMFT calculations (also for six bath levels
per ring unit cell) were carried out by He and Lu11 at a
considerably lower effective temperature (T = 10−5t). The
excitation gap in this case was found to extend to U → 0.
On the basis of these results the authors concluded that the
spin-liquid phase of the honeycomb lattice at half filling exists
from U = 0 up to the onset of the antiferromagnetic phase
near U = 4.5t .

Closely related to these works are two calculations based on
the variational cluster approximation12 (VCA) by Yu et al.13

and Seki and Ohta.14 In both cases, ED was used as impurity
solver, with six bath levels as in Refs. 6 and 11. Whereas Yu
et al. identified a spin-liquid phase in the range U ≈ 3t–4t and
semimetallic behavior at smaller values of U , Seki and Ohta
obtained a similar insulating contribution to the self-energy at
the Dirac points as in Ref. 6 and concluded that the Mott gap
persists down to arbitrarily small values of U .

Most recently, Hassan and Sénéchal15 performed ED
calculations for the honeycomb lattice within VCA, CDMFT,
and the cluster dynamical impurity approximation16 (CDIA).
They argued that a bath consisting only of six levels per ring
unit cell is insufficient and leads to the erroneous conclusion
that the system is gapped for all nonzero values of the on-site
Coulomb interaction U . In contrast, two- and four-site unit
cells with two bath levels per site were shown to give rise to
first-order transitions. In this context it is also important to
recall the results of functional renormalization group (FRG)
calculations17 for the honeycomb lattice which reveal a stable
semimetallic phase below about U ≈ 3.8t .

In view of these contradictory results it is evident that the
possible existence and extent of the semimetallic phase of the
honeycomb lattice are difficult to determine within present
nonlocal many-body techniques. In particular, it is not clear
which assumptions and approximations give rise to certain
consequences: the size and shape of the correlated cluster,
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the size and symmetry of the bath in ED, the accessible
temperature range, the accuracy of spectral functions at very
low energies, etc. Naturally, these uncertainties also affect the
identification of the elusive spin-liquid phase.

The purpose of this work is to shed light on some of
these issues by comparing new results derived within the
dynamical cluster approximation18 (DCA) with previous ones
obtained within CDMFT.4,6 As impurity solver we use finite-
temperature ED as well as CTQMC. The nearly quantitative
agreement between the ED and CTQMC self-energies, within
DCA as well as CDMFT, demonstrates that the intrinsic
limitations of these impurity solvers are not the cause of the
discrepancies between the various results cited above.

Instead we show here that, for the six-site ring unit cell of
the honeycomb lattice, it is of crucial importance to preserve
the translational invariance of the system. In the case of this
unit cell, deviations from bulk symmetry may readily open
a gap at the Dirac points. Thus, the semimetallic and spin-
liquid phases can only be studied properly by using many-
body methods that do not violate translation symmetry. This
argument disqualifies CDMFT which is well known to yield
a self-energy that is not translationally invariant.19 The self-
energy components in this scheme account for correlations
within the unit cell, but not between cells. We therefore believe
that all CDMFT calculations performed until now for the ring
unit cell of the honeycomb lattice should exhibit, at low U and
low T , an excitation gap which is an artifact caused by the lack
of translation symmetry of the self-energy. Although this gap
is related to the presence of the local Coulomb interaction, it is
not a true Mott gap but merely the consequence of the intrinsic
limitation of the cluster approach. As a result, CDMFT and
other schemes that do not preserve translation invariance are
not suitable for the identification of a spin-liquid phase on the
honeycomb lattice.

The comparison of the CDMFT self-energy with analogous
results derived within DCA, for ED as well as CTQMC, un-
derlines this point. In DCA, the self-energy is by construction
translationally invariant, so that the electronic structure at low
U is semimetallic, in agreement with the predictions based
on large-scale QMC and FRG calculations.1,2,17 The spurious
tail of the excitation gap at small U and low T that is seen in
CDMFT is absent in DCA.

As will be shown below, in the case of the honeycomb
lattice, the DCA condition that ensures translation symmetry
is too rigid for the description of correlations within the unit
cell. As a result, the semimetallic phase is still stable near
U = 5t–6t where CDMFT and large-scale QMC calculations
already find Mott-insulating behavior. Thus, CDMFT and
DCA may be viewed as complementary cluster schemes: DCA
is preferable at low U since it maintains the long-range order
that is crucial for the Dirac cones, whereas CDMFT yields
a more realistic description of short-range correlations in the
Mott phase when the absence of translation symmetry plays a
minor role.

We also note here that the gap tail obtained in CDMFT
at small U is not related to the finite-size and symmetry
properties of the bath used in ED. On the contrary, in the
special case of the honeycomb lattice, a rather small bath
containing only six levels is sufficient for the description of
short-range correlations within the six-site unit cell. The reason

is that, because of the semimetallic properties of the system,
the projection of the bath Green’s function on a finite cluster
is not affected by the usual low-energy disparities that arise in
the case of correlated metals.

In this work, the focus is on the paramagnetic semimetallic
and insulating phases of the Hubbard model of the honeycomb
lattice at half filling. There is general consensus that the strong-
coupling phase of this model is antiferromagnetic, with a criti-
cal Coulomb interaction of about Uc ≈ 4t–5t .1,4,11,13–15,17,20–23

Similar conclusions have been reached using lattice field
theory methods for short-range as well as long-range Coulomb
interactions.24 As these results demonstrate, the chiral sym-
metry of the hexagonal lattice which gives rise to the linear
dispersion of the energy bands in the vicinity of the Dirac cones
is broken spontaneously once the interaction reaches a certain
strength. In these models, a staggered field is introduced which
serves as means to break the chiral symmetry, while periodic
boundary conditions ensure semimetallic behavior at weak
coupling.

The outline of this paper is as follows: In Sec. II we discuss
the application of DCA and CDMFT to the honeycomb lattice
and point out the key difference between the self-energies
obtained within these schemes. Section III presents the main
ingredients of the ED impurity solver for both DCA and
CDMFT. Section IV provides the discussion of the results
obtained within ED DCA, and the comparison with analogous
CTQMC DCA results. The summary is presented in Sec. V.

II. DCA VERSUS CDMFT FOR THE HONEYCOMB
LATTICE

To describe Coulomb correlations in the honeycomb lattice
we consider the single-band Hubbard Hamiltonian

H = −t
∑
〈ij〉σ

(c+
iσ cjσ + H.c.) + U

∑
i

ni↑ni↓, (1)

where t is the nearest-neighbor hopping term and U the
on-site Coulomb energy. Throughout this paper t = 1 defines
the energy scale. The noninteracting band dispersion is
given by ε(k) = ±t |1 + eikx

√
3 + ei(kx

√
3+ky3)/2|. The nearest-

neighbor spacing is assumed to be a = 1. We choose a
six-site ring unit cell with positions specified as a1 = (0,0),
a2 = (0,1), a3 = (

√
3/2,3/2), a4 = (

√
3,1), a5 = (

√
3,0), and

a6 = (
√

3/2, −1/2). The supercell lattice vectors are given by
A1/2 = (3

√
3/2, ±3/2). For other unit cells, such as 2- and

4-site clusters, see Ref. 15.
Within CDMFT as well as DCA, the interacting lattice

Green’s function in the site basis is defined as

Gij (iωn) =
∑

k

[iωn + μ − h(k) − �(iωn)]−1
ij , (2)

where ωn = (2n + 1)πT are Matsubara frequencies and T

is the temperature. At half filling, the chemical potential is
μ = U/2. The k sum extends over the reduced Brillouin zone,
h(k) = −t(k), where t(k) denotes the hopping matrix for the
superlattice, and �ij (iωn) represents the self-energy matrix in
the site representation.

Within CDMFT, the elements of t(k) within the unit cell
are given by tij = t for neighboring sites. In addition, hopping
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between cells yields

t14 = t e−ik·A1 , t25 = t e−ik·A2 , t36 = t e−ik·A3 , (3)

where A3 = A2 − A1. The hopping matrix t(k) is Hermitian,
so that tj i = t∗ij . All other elements vanish.

To distinguish the hopping matrix elements within DCA,
we denote them by t̄ij (k). In the real-space version of
DCA19 they are related to those within CDMFT via a phase
factor:

t̄ij = tij e−ik·aij , (4)

where aij = ai − aj . This phase relation yields the following
matrix elements:

t̄12 = t̄36 = t̄54 = t e−ik·a12 ,

t̄23 = t̄41 = t̄65 = t e−ik·a23 , (5)

t̄34 = t̄52 = t̄16 = t e−ik·a34 ,

with analogous connections among the Hermitian elements.
All other matrix elements vanish.

The cluster Hamiltonian in CDMFT has the hopping
matrix elements [

∑
k t(k)]ij = t clij where t clij = t = 1 for first

neighbors and t clij = 0 otherwise. In contrast, in DCA we
find t̄ clij = t̄ = 0.8103 for first and third neighbors and t̄ clij = 0
otherwise.

Within CDMFT as well as DCA, Gij is a symmetric matrix,
with site-independent diagonal components Gii . Thus, the
local density of states is sixfold degenerate. In the case of
CDMFT, there are three independent off-diagonal elements:
G12, G13, and G14. Here, G11, G13 are imaginary and G12, G14

are real. Thus, the corresponding density of states components
ρ11 and ρ13 are even functions of energy, while ρ12 and
ρ14 are odd. In the case of DCA, translation symmetry is
preserved, so that one has the additional condition ρ12 = ρ14

and G12 = G14 due to the equality of first- and third-neighbor
hopping interactions t̄ .

Because of these symmetry properties, it is useful to express
the lattice Green’s function in the diagonal molecular-orbital
basis whose elements Gm(iωn) (m = 1 · · · 6) are determined
by

G1,2 = (G11 + 2G13) ± (G14 + 2G12),
(6)

G3,4 = G5,6 = (G11 − G13) ± (G14 − G12).

The unitary transformation T̄im linking the site and molecular-
orbital bases is defined in Eq. (6) of Ref. 6. Evidently,
in CDMFT there are two independent complex functions,
G1 = −G∗

2 and G3 = −G∗
4. In DCA, the elements Gm=3···6

are degenerate and imaginary. The on-site and intersite
components of the lattice Green’s function can be derived
by inverting Eq. (6):

G11 = [(G1 + G2) + 2(G3 + G4)]/6,

G12 = [(G1 − G2) − (G3 − G4)]/6,
(7)

G13 = [(G1 + G2) − (G3 + G4)]/6,

G14 = [(G1 − G2) + 2(G3 − G4)]/6.

Figure 1 illustrates the uncorrelated density of states
components in the diagonal molecular orbital basis, where
ρm(ω) = − 1

π
Im Gm(ω). The total density of states is, of
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FIG. 1. (Color online) Density of states ρ(ω) (solid curves)
of honeycomb lattice and cluster components ρm(ω) in diagonal
molecular orbital basis (dashed curves) for (a) CDMFT and (b) DCA.
For clarity, these components are divided by nc = 6. In CDMFT,
all density components are nonsymmetric and orbitals 3 and 4 are
doubly degenerate. In DCA, only ρ1 and ρ2 are nonsymmetric, while
the degenerate components ρm=3···6 are symmetric. ω = 0 defines the
Fermi energy for half filling.

course, the same within CDMFT and DCA, but its decompo-
sition into molecular-orbital or intersite contributions differs
for these two schemes. The four CDMFT densities shown in
panel (a) are nonsymmetric and satisfy the relations ρ2(ω) =
ρ1(−ω) and ρ4(ω) = ρ3(−ω). The corresponding DCA den-
sities are plotted in panel (b). In this case, only ρ1(ω) =
ρ2(−ω) are nonsymmetric, whereas ρ3(ω) = ρ4(ω) are
symmetric.

Figure 2(a) shows the Brillouin zone of the honeycomb
lattice together with the three times smaller reduced zone.
Panel (b) illustrates the contributions to the density of states
stemming from the outer k regions KMK ′M ′ and the inner
regions 	M ′K ′. These two contributions overlap slightly since
the point K ′ does not lie halfway between 	 and M . Thus, the
low-energy part of the density of states (denoted as K) extends
up to |ω| � 2, while the high-energy part (denoted as 	)
corresponds to the window 1.75 � |ω| � 3. The comparison
with Fig. 1(b) shows that the diagonal elements of the DCA
density of states correspond to the distributions indicated in
Fig. 2(b). Thus, ρ1,2(ω) account for the energy bands in the
inner regions 	M ′K ′ and ρ3,4(ω) for those in the outer regions
KMK ′M ′ of the original Brillouin zone. The momentum
regions shown in Fig. 2(a) therefore specify the appropriate
tiling of the Brillouin zone within the DCA.
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FIG. 2. (Color online) (a) Segment of Brillouin zone of honey-
comb lattice (solid red lines). The reduced zone (dashed blue lines)
is obtained by folding the Dirac points K onto 	 and the M points
onto M ′. (b) Decomposition of density of states into low-energy
contribution (denoted as K) corresponding to outer regions KMK ′M ′

and high-energy contribution (denoted as 	) corresponding to inner
regions 	M ′K ′ of large Brillouin zone.

The self-energy matrices in CDMFT and DCA satisfy the
same symmetry properties as the lattice Green’s functions
so that they can be diagonalized in the same manner.
These diagonal elements will be denoted as �m(iωn). In
the site basis the components �11 and �13 are imaginary,
whereas �12 and �14 are real. As translation symmetry is not
obeyed in CDMFT, �12 and �14 differ, while in DCA they
coincide.

We point out that although the hopping matrix elements t(k)
in CDMFT and DCA differ only by a unitary transformation as
indicated in Eq. (4), the same does not hold for the respective
self-energy matrices. As discussed below, the preservation of
translation invariance in DCA and its absence in CDMFT
give rise to fundamentally different physical solutions which
severely affect the phase boundaries. Thus, the DCA and
CDMFT self-energy matrices are not simply related via a
unitary transformation.

Severe differences of this kind between DCA and CDMFT
do not arise in the case of the Hubbard model for the square
lattice, where the cluster Hamiltonians maintain the same
symmetry. The only difference is that the hopping interaction
between neighbors is changed from t = 1 in CDMFT to
t̄ = 1.273 in DCA. As a result, these cluster schemes lead
to a less dramatic reorganization of spectral weight among the
cluster components than in the case of the honeycomb lattice.

III. EXACT DIAGONALIZATION

To avoid double counting of Coulomb interactions in
the quantum impurity calculation, the self-energy must be
removed from the six-site cluster in which correlations
are treated explicitly. This removal yields the bath Green’s
function matrix

G0(iωn) = [G(iωn)−1 + �(iωn)]−1. (8)

Within the ED approach, this bath Green’s function of the
infinite lattice is projected onto the corresponding function
of a supercluster consisting of nc = 6 correlated sites within
the unit cell plus a bath consisting of nb discrete levels.
Here, we choose nb = 6, so that the total number of levels
of the supercluster is ns = nc + nb = 12. Within the diagonal
molecular-orbital basis, this projection implies

G0,m(iωn) ≈ Gcl
0,m(iωn)

=
(

iωn + μ − εm −
12∑

k=7

|Vmk|2
iωn − εk

)−1

, (9)

where εm=1···6 denotes impurity levels and εk=7···12 bath levels.
The bath levels are defined relative to the chemical potential.
We assume that the molecular orbitals couple to independent
baths so that the hybridization matrix elements are also
diagonal in this representation: Vmk = δm+6,kVk . Figure 3(a)
illustrates the impurity and bath levels in the diagonal molecu-
lar orbital basis. Panel (b) shows the equivalent representation
when the impurity orbitals are transformed to the original site
basis. The bath remains unchanged and the hopping terms in
this basis are given by Vik = ∑

m T̄imVmk . This picture differs
from the one in which also the bath is treated within the site
basis (see below).

To determine the bath levels εk and hopping terms Vmk we
minimize the difference

Diffm =
M∑

n=0

WN
n

∣∣G0,m(iωn) − Gcl
0,m(iωn)

∣∣2
, (10)

where M ≈ 210 is the total number of Matsubara points and
the weight function WN

n = 1/ωN
n is introduced to give more

weight to the low-frequency region. We usually take N = 1
or N = 2. Note also that both Green’s functions in the above
expression approach 1/iωn for large ωn. Thus the difference
defined in Eq. (10) automatically focuses on the low-energy
region. This is not the case when the differences of the inverse
Green’s functions are minimized instead. The reason is that
the hybridization functions corresponding to G0,m and Gcl

0,m

are not normalized to the same asymptotic amplitudes. To start
the iterative procedure, we use bath parameters obtained for the
uncorrelated system, or from a converged solution for nearby
Coulomb energies. The resulting εk and Vmk are usually very
stable against variations of initial conditions.

In the CDMFT calculations discussed in Ref. 6, not only
the bath levels εk and hopping elements Vk were used as
parameters in the fit of G0,m(iωn), but also the impurity levels
εm. Since the expression Eq. (9) ensures the correct asymptotic
behavior, the variation of εm yields slightly better accuracy
of the fit at the lower Matsubara points. For each diagonal
component G0,m three fit parameters are then available. As
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FIG. 3. (Color online) (a) Cluster levels in molecular orbital basis.
There are six independent terms connecting orbital levels εm=1···6 (red
dots) and bath levels εk=7···12 (blue dots) via hopping integrals Vk=7···12.
In CDMFT (for fixed impurity levels) one has ε1,2 = ∓2t , ε3,4 =
ε5,6 = ±t , and ε7 = −ε8, ε9 = ε11 = −ε10 = −ε12, V7 = V8, V9 =
V10 = V11 = V12. Thus there are four independent bath parameters.
In DCA, ε1,2 = ∓3t̄ , ε3···6 = ε9···12 = 0; i.e., there are only three
independent fit parameters. (b) Cluster levels in site basis i = 1 · · · 6
(green dots) connected to molecular orbital bath levels εk=7···12 (blue
dots) via hopping integrals Vik . For clarity, the hopping interactions
between impurity sites are not shown. Representations (a) and (b) are
equivalent since they are connected via the unitary transformation T̄

between impurity sites i = 1 · · · 6 and orbitals m = 1 · · · 6. The bath
molecular orbital levels in (b) are the same as in (a). Thus, although
the cluster sites have identical levels at zero energy, the bath levels
maintain the orbital symmetry.

there are only two independent complex functions G0,m, the
total number of parameters to fit the bath is six. As shown in
Fig. 24 of Ref. 10 for U = 4 and T = 0.01, this procedure
yields a surprisingly good reproduction of the lattice bath
Green’s function via the cluster Anderson Green’s function,
in spite of the fact that we use only one bath level per impurity
orbital. The reason for this good fit is the semimetallic nature
of the honeycomb lattice, giving rise to a vanishing density
of states at the Fermi level. In contrast, in ordinary correlated
metals and the triangular or square lattice Hubbard models,
the density of states of the infinite lattice is finite, so that a
successful fit to a cluster Green’s function usually requires at

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

  0  1  2  3  4

 G
0,

m
 (

iω
n)

 

ωn

ED DCA   U = 3   T=0.01

Re G0,1

Im G0,1

Im G0,3

FIG. 4. (Color online) Comparison of lattice bath Green’s func-
tion G0,m(iωn) (solid red curves) and cluster Green’s function (dashed
blue curves) for U = 3 and T = 0.01. As the density of states for
m = 3 is symmetric in DCA [see Fig. 1(b)], G0,3 is purely imaginary,
while G0,1 is complex. Thus, the latter function is fitted with two
parameters, whereas G0,3 involves only one fit parameter. The solid
and dashed curves for G0,1 are indistinguishable.

least two bath levels per orbital and restriction to not very low
temperatures (typically T � 0.01).

In the DCA calculations presented below, we fix the
impurity levels εm at their nominal cluster values. Thus,
ε1,2 = ∓3t̄ and ε3,4 = 0. The latter value reflects the fact
that the DCA density of states components ρ3,4(ω) are even
functions of energy. Thus, the fit of G0,m=1,2 involves two
parameters (the bath level ε7 = −ε8 and the hopping element
V7 = V8), while G0,m=3,4 includes only the hopping element
V9 = V10 as fit parameter.

Figure 4 illustrates the quality of the fit of G0 within ED
DCA for U = 3 and T = 0.01. The parameters used in these
fits are ε1 = −3t̄ = −2.4309, ε7 = −1.856 94, V7 = 0.262 70
for m = 1 and ε3 = ε9 = 0, V9 = 0.867 01 for m = 3. As
pointed out above in the case of CDMFT, the excellent
representation of the lattice Green’s function via the cluster
Green’s function using only one bath level per impurity orbital
is related to the vanishing density of states at the Fermi level.

The diagonalization of the supercluster Hamiltonian is
conveniently carried out in the site basis. At low temperatures
only a few excited states need to be included in the evaluation
of the cluster Green’s function Gcl

ij (iωn). The diagonalization
can then be performed very efficiently by making use of
the Arnoldi algorithm. Details concerning this procedure are
provided in Refs. 7,8 and 10. Since the cluster Green’s
function obeys the same symmetry properties as the lattice
Green’s function, it is diagonal in the molecular-orbital basis.
These elements will be denoted as Gcl

m(iωn). The diagonal
cluster self-energy components are then given by an expression
analogous to Eq. (8):

�cl
m (iωn) = 1/Gcl

0,m(iωn) − 1/Gcl
m(iωn). (11)

The key physical assumption in DMFT is now that this cluster
self-energy provides an accurate representation of the lattice
self-energy. Thus,

�m(iωn) ≈ �cl
m (iωn). (12)

In the next iteration, these self-energy components are used as
input in the lattice Green’s function Eq. (2). In the diagonal
molecular-orbital basis the DCA lattice Green’s function is
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given by

Gm(iωn) =
∑

k

[iωn + μ − T̄ −1h̄(k)T̄ − �(iωn)]−1
mm. (13)

We note here that, at real energies, the cluster quantities Gcl
m,

Gcl
0,m, and �cl

m have discrete spectra, while the corresponding
lattice spectra associated with the quantities Gm, G0,m, and
�m are continuous.

We close this section by pointing out that we believe the
projection of the bath Green’s function within the diagonal
molecular-orbital basis discussed above to be more general
and more flexible than analogous projections within the
nondiagonal site basis. As mentioned above, within CDMFT
there are two independent complex functions G0,m (with
nonsymmetric spectral distributions) that are fitted each with
one bath level εk and one hopping term Vk (assuming the
impurity level εm to be fixed). Thus, there are altogether
four fit parameters. This should be compared to only one
fit parameter if the site basis is used instead. For symmetry
reasons all bath levels then are zero so that only the site
independent impurity bath hopping element remains as a
single-fit parameter. Introducing a hopping interaction among
bath levels as was done in Ref. 11 increases the number of fit
parameters from one to two. Actually, since the bath can always
be represented in a diagonal form, hopping among bath levels
is implicitly included in the diagonal molecular orbital picture
with four fit parameters. Analogous considerations hold for
DCA. Nevertheless, as will be shown in the next section, these
slightly different implementations of ED all yield consistent
answers concerning the variation of the excitation gap as a
function of Coulomb energy.

IV. RESULTS AND DISCUSSION

Figure 5 shows the comparison of the excitation gaps
obtained for various cluster methods and impurity solvers.
Near U ≈ 5, all calculations (except DCA, see below) predict
a Mott phase with a gap � ≈ 0.5–0.9. At U � 4, the CDMFT
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FIG. 5. (Color online) Comparison of excitation gaps as functions
of Coulomb interaction derived using several cluster methods and
impurity solvers for paramagnetic phase of honeycomb lattice. Meng
et al.: large-scale QMC (Ref. 1), Wu et al.: CTQMC CDMFT (Ref. 4),
Liebsch: ED CDMFT (Ref. 6), He et al.: ED CDMFT (Ref. 11), Seki
et al.: ED VCA (Ref. 14). In contrast, both ED and CTQMC DCA
yield semimetallic behavior with � = 0 for U � 6 (see text).

and VCA results that do not preserve translation symmetry
exhibit a gap tail that persists down to U → 0. The differences
between these results are partly caused by the different
temperatures used in these studies. In particular, the gap
closing near U = 3.8 obtained within CDMFT by Wu et al.4

seems to be related to the rather high temperature, T = 0.05,
employed in the CTQMC calculation. Since the CTQMC
self-energy agrees well with the ED results, CTQMC CDMFT
presumably would also yield a gap at lower T . Also, the ED
calculations in Ref. 6 were carried out at T = 0.005, while
those in Refs. 11 and 14 essentially correspond to the T → 0
limit.

In striking contrast to CDMFT, the translation invariance
of DCA ensures the existence of a semimetallic phase at low
values of U . On the other hand, the condition �12 = �14

cannot generally be correct for the short-range correlations
within the unit cell. Thus, at Coulomb energies, where local
Mott physics dominates and long-range translational invari-
ance becomes less important, DCA should be less appropriate
than CDMFT. Indeed, both ED and CTQMC DCA results
suggest that the semimetallic phase with � = 0 extends to
U > 6, i.e., beyond the critical Coulomb energy Uc ≈ 3.9–4.3
of the antiferromagnetic phase.1,2

This is illustrated in Fig. 6, which shows the interacting
density of states obtained in ED and CTQMC DCA for several
Coulomb energies. The ED spectra were obtained by making
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FIG. 6. (Color online) Density of states A11(ω) = − 1
π

Im G11(ω)
of honeycomb lattice for several Coulomb energies. Red solid
curves: U = 6, dashed curves: U = 3–5. (a) ED DCA (T = 0.01).
(b) CTQMC DCA (T = 0.025). For illustrative purpose, only the
low-energy range of the ED spectra is shown. The dotted curve
denotes the bare density of states.
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use of the extrapolation routine RATINT,25 while the CTQMC
spectra were derived via the maximum entropy method.26 For
details concerning the CTQMC calculations, see Ref. 4. The
main effect of Coulomb interactions is seen to be the usual
band narrowing and effective mass enhancement, as found in
weakly correlated systems. In contrast, the corresponding ED
and CTQMC CDMFT spectra for U = 5 reveal a large Mott
gap of about � = 0.6 (see Fig. 5).4,6

The persistence of semimetallic behavior at large U within
DCA is related to the fact that the enforcement of translation
symmetry is achieved at the expense of equating first- and
third-neighbor interactions in the cluster Hamiltonian. The
self-energy in the site basis then satisfies the condition
�12 = �14, whereas in CDMFT �14 is noticeably smaller than
�12.6,10

The good correspondence between the DCA spectra ob-
tained within ED and CTQMC is a consequence of the
nearly quantitative agreement of the lattice Green’s functions
G1i(iωn) which are shown in Fig. 7. As pointed out in the
preceding section, for symmetry reasons G11 and G13 are
imaginary, while G12 = G14 are real. Both impurity solvers
yield Im G11(iωn) → 0 in the limit ωn → 0, implying that
the local density of states, ρ(ω) = − 1

π
Im G11(ω) vanishes at

ω = 0. Also, both schemes indicate that with increasing values
of U the initial slope of Im G11 and Im G13 increases. Thus,
the Dirac cones become steeper and spectral weight is shifted
towards the Fermi level.

The results obtained within DCA differ in two qualitative
aspects from those derived previously in CDMFT. As shown
in Fig. 8, the components G12 and G14 in CDMFT do not
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FIG. 8. (Color online) Green’s function components G1i(iωn)
(i = 1,2,4) of honeycomb lattice as functions of Matsubara frequency
calculated within ED CDMFT. Solid red curves: U = 4; dashed
curves: U = 1–3.

coincide. Moreover, the initial slopes of Im G11 and Im G13

become smaller with increasing U rather than larger as within
DCA. In Ref. 6 it was demonstrated that for U � 4 a Mott
gap opens in the density of states, in approximate agreement
with the large-scale QMC calculations by Meng et al.1 At
smaller values of U , a tiny gap or pseudogap was also found
(see below), which is however difficult to resolve within ED
at finite T . As the opening of a gap in the density of states
implies a reduction of |Im G11(iωn)| at small values of ωn,
the results shown in Figs. 7 and 8 underline the fundamental
difference between DCA and CDMFT for the honeycomb
lattice: Whereas DCA yields a weakly correlated semimetal,
CDMFT gives rise to insulating behavior even at small U .

To illustrate the effect of Coulomb correlations in more
detail, we show in Fig. 9 the self-energy components in
the site basis for several values of U . The corresponding
results obtained within CTQMC DCA are depicted in Fig. 10.
There is good overall correspondence between these two
impurity solvers, except for slightly different magnitudes of
the off-diagonal components. We note, however, that Re �12

and Im �13 are approximately one and two orders of magnitude
smaller than Im �11, respectively. As can be seen in Fig. 7,
these differences have only a minor effect on the variation
of the Green’s function components with increasing Coulomb
energy.

The crucial question in the case of the honeycomb lattice is
how Coulomb correlations influence the energy bands in the
vicinity of the Dirac points. The self-energy at these points can
be shown to have the simple form6

�(K,iωn) ≈ iωna + b2

iωn(1 − a)
, ωn → 0, (14)

where the coefficients are given by

a = Im[�11(iωn) − �13(iωn)]/ωn, (15)

b = Re[�12(iωn) − �14(iωn)] (16)

in the limit ωn → 0. Thus, �(K,iωn) is imaginary as expected
for particle-hole symmetry near the Dirac points. Moreover,
this self-energy consists of metallic (∼iωn) and insulating
(∼1/iωn) contributions, where the latter term is a direct
consequence of the fact that �12 
= �14. The presence of this
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FIG. 9. (Color online) Self-energy components �1i(iωn) (i =
1,2,3) of honeycomb lattice as functions of Matsubara frequency
calculated within ED DCA for U = 1–4 at T = 0.01.

term implies Re �(K,ω) ≈ b2/[ω(1 − a)] at real ω. In the
low-temperature limit, this expression yields an excitation gap
of magnitude � ≈ 2

√|c|, where c = b2/(1 − a). A similar
insulating contribution to the self-energy was recently found
in Ref. 14. Presumably, this insulating term is also present
in the ED calculations reported in Refs. 11 and 13. At finite
T , the gap is smoothened out so that it becomes difficult to
determine its boundaries. In contrast, as discussed in Sec. II,
DCA preserves the bulk symmetry, so that �12 = �14 and
� = 0. Thus, the DCA self-energy at the Dirac points is purely
metallic, where the increasing magnitude of the coefficient
a implies increasing quasiparticle broadening and shift of
spectral weight towards the Fermi level as U increases. From
the initial slope of Im �11 at U = 4 we obtain an effective
mass enhancement of about m∗/m ≈ 1.3.

The above discussion demonstrates that the presence or
absence of the insulating contribution to �(K,iωn) is not
caused by the impurity solver used in the CDMFT or DCA
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FIG. 10. (Color online) Self-energy components �1i(iωn) (i =
1,2,3) of honeycomb lattice as functions of Matsubara frequency
calculated within CTQMC DCA for U = 1–4 at T = 0.01.

calculations. In fact, the good agreement between ED and
CTQMC, for both CDMFT and DCA, suggests that in the case
of the honeycomb lattice one bath level per impurity orbital is
sufficient for an accurate fit of the bath Green’s function. The
reason is that, because of the semimetallic nature of the honey-
comb lattice, the projection of the bath Green’s function of the
infinite lattice onto a finite-cluster Anderson Green’s function
is not plagued by the low-energy–low-temperature discrepan-
cies that usually occur in the case of correlated metals. In these
systems at least two bath levels per impurity orbital are typi-
cally required and very low temperatures must be avoided.10

The focus of this section is on the paramagnetic phase of
the honeycomb lattice derived within two impurity solvers
and two cluster extensions of DMFT. We close this discus-
sion by commenting briefly on the antiferromagnetic phases
obtained at strong coupling. Within CTQMC CDMFT we had
shown previously4 that Uc ≈ 3.7t , in approximate agreement
with other schemes.1,11,13–15,17 Analogous CTQMC DCA
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calculations yield a slightly smaller value, Uc ≈ 3.3t . The
difference is presumably related to the fact pointed out
above, namely, that the enforcement of translation symmetry
within DCA implies the condition �12 = �14, which accounts
properly for interactions between unit cells, but which is surely
unrealistic within the ring unit cell, in particular, at large U ,
where short-range correlations dominate. Thus, in this range,
CDMFT should provide a more adequate description of the
cluster self-energy.

V. SUMMARY

The role of Coulomb correlations in the Hubbard model
for the honeycomb lattice has been studied within finite-
temperature exact diagonalization and continuous-time quan-
tum Monte Carlo combined with the dynamical cluster
approximation. The unique feature of DCA is that it preserves
the translation invariance so that the system at small values of
U is semi-metallic. In contrast, CDMFT violates translation
symmetry which, in the case of ring unit cells, implies
the opening of an excitation gap at arbitrarily small U ,
regardless of the impurity solver. This gap is therefore an
artifact caused by the lack of long-range crystal symmetry
and does not correspond to a true Mott gap. At larger
values of U , however, many-body interactions are dominated
by short-range correlations and translation symmetry ceases
to be important. DCA then becomes less accurate since
it overemphasizes semimetallic behavior. Thus, for U ≈ 5,
CDMFT is preferable and reveals a Mott gap in qualitative
agreement with large-scale QMC calculations.

In the case of the ring unit cell of the honeycomb lattice,
DCA and CDMFT may therefore be viewed as complementary
cluster approaches. As DCA preserves translation symmetry,
it is more appropriate in the semimetallic phase at small U

where long-range order is a prerequisite for the description of

the weakly correlated Dirac cones. The condition �12 = �14

which guaranties this symmetry, however, is unrealistic at
larger U , when short-range correlations within the unit cell
begin to dominate. Thus, in the region of the Mott phase,
CDMFT is more suitable. As a result of these inherent
limitations of both cluster schemes, the critical Coulomb
interaction defining the precise boundary between these phases
is at present difficult to determine within either CDMFT or
DCA. We emphasize that this difficulty is not related to the
finite size or symmetry of the bath used in ED. On the contrary,
within CDMFT as well as DCA, the ED self-energies agree
remarkably well with the corresponding CTQMC results.

It is interesting to inquire why the remarkable difference
between CDMFT and DCA for the honeycomb lattice dis-
cussed in this paper does not also manifest itself in other
systems, such as the Hubbard models for square and triangular
lattices. In these cases, long-range order is mainly responsible
for the logarithmic divergence of the Van Hove singularities
of the density of states. Thus, any lack of perfect translation
symmetry would give rise to a rounding of this peak, an
effect that would be difficult to distinguish from broadening
induced by finite temperature and quasiparticle damping. In
contrast, any rounding of Dirac cones induces the opening of
a gap. In this regard, the Dirac cones of the honeycomb lattice
correspond to a rather peculiar special situation that does not
arise in most cases which have been studied previously within
CDMFT and DCA at finite temperatures.
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