000201788 001__ 201788
000201788 005__ 20230426083125.0
000201788 0247_ $$2doi$$a10.1103/PhysRevB.90.205134
000201788 0247_ $$2ISSN$$a0163-1829
000201788 0247_ $$2ISSN$$a0556-2805
000201788 0247_ $$2ISSN$$a1095-3795
000201788 0247_ $$2ISSN$$a1098-0121
000201788 0247_ $$2ISSN$$a1550-235X
000201788 0247_ $$2Handle$$a2128/8862
000201788 0247_ $$2WOS$$aWOS:000345538900006
000201788 037__ $$aFZJ-2015-04082
000201788 041__ $$aEnglish
000201788 082__ $$a530
000201788 1001_ $$0P:(DE-HGF)0$$aIshida, H.$$b0$$eCorresponding Author
000201788 245__ $$aBuried topological edge state associated with interface between topological band insulator and Mott insulator
000201788 260__ $$aCollege Park, Md.$$bAPS$$c2014
000201788 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435233424_9500
000201788 3367_ $$2DataCite$$aOutput Types/Journal article
000201788 3367_ $$00$$2EndNote$$aJournal Article
000201788 3367_ $$2BibTeX$$aARTICLE
000201788 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201788 3367_ $$2DRIVER$$aarticle
000201788 520__ $$aThe electronic structure at the interface between a topological band insulator and a Mott insulator is studied within layer dynamical mean field theory. To represent the bulk phases of these systems, we use the generalized Bernevig-Hughes-Zhang model that incorporates the Hubbard-like on-site Coulomb energy U in addition to the spin-orbit coupling term that causes band inversion. The topological and Mott insulating phases are realized by appropriately choosing smaller and larger values of U, respectively. As expected, the interface is found to be metallic because of the localized edge state. When the Coulomb energy in the Mott insulator is close to the critical value, however, this edge state exhibits its largest amplitude deep within the Mott insulator rather than at the interface. This finding corresponds to a new type of proximity effect induced by the neighboring topological band insulator and demonstrates that, as a result of spin-orbit coupling within the Mott insulator, several layers near the interface convert from the Mott insulating phase to a topological insulating phase. Moreover, we argue that the ordinary proximity effect, whereby a Kondo peak is induced in a Mott insulator by neighboring metallic states, is accompanied by an additional reverse proximity effect, by which the Kondo peak gives rise to an enhancement of the density of states in the neighboring metallic layer.
000201788 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201788 542__ $$2Crossref$$i2014-11-24$$uhttp://link.aps.org/licenses/aps-default-license
000201788 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201788 7001_ $$0P:(DE-Juel1)130801$$aLiebsch, A.$$b1$$ufzj
000201788 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.90.205134$$bAmerican Physical Society (APS)$$d2014-11-24$$n20$$p205134$$tPhysical Review B$$v90$$x1098-0121$$y2014
000201788 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.90.205134$$gVol. 90, no. 20, p. 205134$$n20$$p205134$$tPhysical review / B$$v90$$x1098-0121$$y2014
000201788 8564_ $$uhttps://juser.fz-juelich.de/record/201788/files/PhysRevB.90.205134.pdf$$yOpenAccess
000201788 8564_ $$uhttps://juser.fz-juelich.de/record/201788/files/PhysRevB.90.205134.gif?subformat=icon$$xicon$$yOpenAccess
000201788 8564_ $$uhttps://juser.fz-juelich.de/record/201788/files/PhysRevB.90.205134.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201788 8564_ $$uhttps://juser.fz-juelich.de/record/201788/files/PhysRevB.90.205134.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201788 8564_ $$uhttps://juser.fz-juelich.de/record/201788/files/PhysRevB.90.205134.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201788 8564_ $$uhttps://juser.fz-juelich.de/record/201788/files/PhysRevB.90.205134.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201788 909CO $$ooai:juser.fz-juelich.de:201788$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130801$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201788 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000201788 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000201788 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201788 9141_ $$y2015
000201788 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000201788 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201788 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201788 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201788 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201788 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201788 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201788 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201788 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201788 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201788 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201788 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000201788 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000201788 980__ $$ajournal
000201788 980__ $$aVDB
000201788 980__ $$aFullTexts
000201788 980__ $$aUNRESTRICTED
000201788 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201788 980__ $$aI:(DE-Juel1)PGI-1-20110106
000201788 9801_ $$aFullTexts
000201788 981__ $$aI:(DE-Juel1)PGI-1-20110106
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/25/14/143201
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.256403
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1606
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.155127
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.075106
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.125113
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.3045
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.1057
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.106401
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.045322
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.205122
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1602
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.195121
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.085103
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms2524
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.235113
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.161108
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.245120
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.68.13
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.2549
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02450
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.241104
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.066802
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.79.013607
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.045130
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.045112
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.065301
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.72.1545
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.045125
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/24/5/053201
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(01)00173-4
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.165138
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1133734
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.116402
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.115134
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.106408
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.045130
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.245119
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.155116
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/14/3/033003
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.136804
000201788 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.121408