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The electronic structure at the interface between a topological band insulator and a Mott insulator is studied

within layer dynamical mean field theory. To represent the bulk phases of these systems, we use the generalized

Bernevig-Hughes-Zhang model that incorporates the Hubbard-like on-site Coulomb energy U in addition to the

spin-orbit coupling term that causes band inversion. The topological and Mott insulating phases are realized by

appropriately choosing smaller and larger values of U , respectively. As expected, the interface is found to be

metallic because of the localized edge state. When the Coulomb energy in the Mott insulator is close to the critical

value, however, this edge state exhibits its largest amplitude deep within the Mott insulator rather than at the

interface. This finding corresponds to a new type of proximity effect induced by the neighboring topological band

insulator and demonstrates that, as a result of spin-orbit coupling within the Mott insulator, several layers near the

interface convert from the Mott insulating phase to a topological insulating phase. Moreover, we argue that the

ordinary proximity effect, whereby a Kondo peak is induced in a Mott insulator by neighboring metallic states,

is accompanied by an additional reverse proximity effect, by which the Kondo peak gives rise to an enhancement

of the density of states in the neighboring metallic layer.
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I. INTRODUCTION

The role of Coulomb correlations in topological band

insulators has recently received wide attention [1]. As a result

of spin-orbit coupling, the band structure of these materials

exhibits charge excitation spectra whose physical characteris-

tics can depend strongly on the Coulomb interaction. Iridium

compounds, such as Na2IrO3 and A2Ir2O7 (A = Pr,Eu), have

recently been proposed as materials in which the interplay of

spin-orbit interaction and electronic correlation effects might

be important [2–4]. The phase diagrams of prototype two-

dimensional bulk systems of this kind were recently studied

by Rachel et al. [5] and Yoshida et al. [6]. It was shown that,

in the paramagnetic limit, such systems exhibit a first-order

quantum phase transition, where the weakly correlated phase

corresponds to a topological band insulator and the strongly

correlated phase to a Mott insulator.

At surfaces of topological insulators, metallic edge states

may exist which are protected against perturbations associated

with impurities and other interactions that do not break the

time-reversal symmetry of the system [7–11]. Because of these

unique properties, heterostructures involving topological band

insulators [12–18] are presently of great interest since they

might be relevant for future technological applications. For

instance, as shown by Ueda et al. [16], the interface of a

topological band insulator and a Mott insulator also exhibits

an edge state which maintains its helical characteristics within

the Mott insulator. Moreover, the quasiparticle properties and

depth profile of this state within the Mott insulator depend

strongly on the local Coulomb energy.

In the present work we study the role of electronic

correlations at the interface between a topological insulator

and a Mott insulator. The important difference between our

approach and the one by Ueda et al. [16] is that we include

spin-orbit coupling also within the Mott insulator. Thus,

with decreasing Coulomb energy, the Mott insulator does not

become a metal but a topological band insulator. The electronic

properties in the vicinity of the interface are treated self-

consistently by using the layer dynamical mean field theory

(DMFT) [19–25]. Local many-body interactions are evaluated

via finite-temperature exact diagonalization (ED) [26–28].

Separate single-site DMFT calculations are performed for the

asymptotic semi-infinite bulk regions. Their influence on the

interface region is taken into account via complex embedding

potentials [29]. For simplicity, a square lattice geometry is

used, as illustrated in Fig. 1 [6,16,30]. To incorporate spin-orbit

interactions, the generalized two-orbital model by Bernevig,

Hughes, and Zhang (BHZ) [31] is used, which includes the

site-dependent Coulomb energy as well as the interorbital

hybridization.
The main result of this study is the displacement of the

edge state from the interface toward the interior of the Mott
insulator when the local Coulomb energy on the corresponding
side of the heterostructure is near the critical value for the
Mott transition. The edge state is then buried deeply within
the Mott insulator so that the boundary between the band and
Mott insulating phases no longer coincides with the physical
interface of the two constituents of the heterostructure. The
origin of this novel proximity effect is the fact that the Mott
transition is first order. As a consequence, within the co-
existence region topological band and Mott insulating phases
compete. Their relative stability depends sensitively on tem-
perature and local Coulomb energy. Moreover, because of the
penetration of the edge state wave function into the Mott
insulator, near the interface the properties of the nominal
Mott insulator are also influenced by the presence of the
neighboring topological band insulator. As a result, the Mott
insulating phase within a certain depth can be converted into
the more stable topological band insulating phase. The edge
state is thereby displaced away from the physical interface
which becomes the boundary between two weakly and strongly
correlated topological band insulators. As the Coulomb energy
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FIG. 1. (Color online) One-dimensional interface between two-

dimensional topological band and Mott insulators. The Coulomb

energies on the left and right side of the interface are defined as

UL and UR , respectively. The electronic properties in the embedding

region are calculated self-consistently within the layer DMFT. The

properties of the asymptotic bulk regions are taken into account via

embedding potentials.

in the Mott insulator increases beyond the coexistence region,
the edge state is localized again at the interface. Its depth
within the Mott insulator diminishes as the Mott gap increases.
Below the coexistence domain, the edge disappears since the
heterostructure then consists of two correlated topological
band insulators.

We emphasize that the displacement of the edge state away

from the interface of the heterostructure is a consequence of

the interorbital hybridization (spin-orbit coupling) in the Mott

insulator. In the absence of spin-orbit coupling, the coexistence

domain involves trivial metallic and insulating phases so that

a topological band insulating solution does not occur. Thus, if

an edge state exists, it is localized at the physical interface.

We also demonstrate that the ordinary proximity ef-

fect [22,24,32,33], i.e., the appearance of a Kondo peak

in a Mott insulator due to neighboring metallic states, is

accompanied by an secondary reverse proximity effect, as a

result of which the Kondo peak leads to an increase of the

density of states (DOS) in the neighboring metallic layer.

The outline of this paper is as follows. Section II presents the

main aspects of the theoretical approach. In particular, we in-

troduce the generalized BHZ two-band model which provides

the basis for the topological band as well as Mott insulating

phases. Also, the embedding scheme is described in which the

effect of the asymptotic bulk materials on either side of the

interface are taken into account via complex local potentials.

Finally, the inhomogeneous layer DMFT is outlined, as well

as the finite-temperature exact diagonalization scheme for the

treatment of local many-body interactions. Section III provides

the discussion of the results. We first present the phase diagram

of the asymptotic bulk materials and illustrate the edge state

at the solid-vacuum interface. The main part discusses the

electronic properties of the interface between topological band

and Mott insulators, in particular, the location of the edge state

as a function of the Coulomb energy within the Mott insulator.

II. THEORY

A. Method

We consider a one-dimensional interface between a two-

dimensional (2D) topological band insulator (BI) and a 2D

Mott insulator (MI), which occupy the left and right half-

space, respectively. The x direction is parallel to the interface,

while the y axis, which points from left to right, is chosen as

the interface normal. To represent the semi-infinite systems

on both sides, we employ the generalized Bernevig-Hughes-

Zhang model,

Ĥ = Ĥbhz + Ĥint

= (Ĥ0 + Ĥso) + Ĥint. (1)

The first term in the second line of Eq. (1),

Ĥ0 =
∑

p,α,σ

(

ǫα −
Uy

2

)

n̂pασ +
∑

〈p,q〉,α,σ

tαc†pασ cqασ , (2)

represents two tight-binding bands originating from two

orbitals, where c
†
pασ (cpασ ) creates (annihilates) an electron

with orbital α = 1,2 in spin state σ = 1 (↑),−1 (↓) on a

2D square lattice point at p = (x,y), with x and y giving

its x and y positions, respectively. In Eq. (2), ǫα and tα
are the site energy and nearest-neighbor hopping integral for

orbital α, Uy is the Coulomb energy, which will be described

below, n̂pασ = c
†
pασ cpασ denotes the orbital occupation, and

the summation over p and q in the second term is taken over

nearest-neighbor lattice-point pairs. The second term in the

second line of Eq. (1), which arises from spin-orbit coupling

and is responsible for the opening of a topological energy band

gap, reads

Ĥso = t12

∑

〈p,q〉,σ

iσ [eiθσ c
†
p2σ cq1σ + e−iθσ c

†
p1σ cq2σ ], (3)

where θ specifies the hopping direction measured relative to

the x axis (θ = 0 and π/2 correspond to the hopping to the

positive x and y directions, respectively). The last term in

Eq. (1),

Ĥint =
∑

p,α

Uy n̂pα↑n̂pα↓, (4)

expresses the on-site Coulomb repulsion between electrons

with opposite spin in the same orbital α. We assume that

the Coulomb energy can vary with lattice layers, while it is

constant within the same layer. It should be noted that the

term − 1
2
Uy n̂pασ in Eq. (2) ensures that the system becomes

electron-hole symmetric when chemical potential µ is chosen

as µ = 0.

Yoshida et al. [6] studied the effect of strong Coulomb

correlations on a topological band insulator by applying single-

site DMFT [19] to periodic 2D bulk systems described by the

same generalized BHZ model. It was shown that the system

undergoes a quantum phase transition from a topological band

insulator to a Mott insulator when one increases the on-site

Coulomb energy U , while keeping the system nonmagnetic.

As schematically illustrated in Fig. 2, the phase transition

is of first order and exhibits hysteresis behavior, i.e., both

topological band and Mott insulating solutions are found if U
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FIG. 2. (Color online) Schematic bulk phase diagram of corre-

lated topological band insulator, derived within generalized BHZ

two-orbital model and single-site DMFT. In the region limited by the

lines Uc1(T ) and Uc2(T ), band and Mott insulating states may coexist.

The true phase boundary defining the relative stability of these phases

is indicated by the line Ub(T ).

is within the coexistence region [Uc1,Uc2]. The width of this

region decreases with increasing temperature T and vanishes

at a critical value Tc.

In the present work, both the topological band insulator

on the left half-space and the Mott insulator on the right

half-space are represented by the generalized BHZ model as

described above. As indicated in Fig. 1, the layer dependent

Coulomb energy, Uy , is set to be UL and UR in the left and right

half-spaces, respectively, where UL < Uc2 and UR > Uc1 (see

Fig. 2 below). We note that our model differs from that in the

recent work of Ueda et al. [16], in which the Mott insulator

was represented by two independent Hubbard bands without

the spin-orbit coupling term defined in Eq. (3).

B. Embedding potential

We calculate the finite-temperature Green’s function of the

interface between two semi-infinite systems by using the layer

DMFT technique [20]. A finite number of lattice layers in

the interface region is treated explicitly, whereas the effect

of the outer regions is taken into account via the embedding

potentials [29], which include correlation effects in the bulk

region [24]. As we consider nonmagnetic solutions in the

present work, the Green’s function and other quantities are

diagonal with respect to spin. In the following, we show only

the up-spin component of the equations and omit spin indices

for simplicity.

By introducing the wave number in the x direction, kx , the

Green’s function in the embedded region is given as

Gpα,p′α′ (iωn) =

∫ π

−π

dkx

2π
eikx (x−x ′)

×〈yα|[iωn + µ − Ĥemb(kx,iωn)]−1|y ′α′〉,

(5)

where the embedding Hamiltonian in the mixed representation,

Ĥemb, is a 2N × 2N matrix with N being the number of the

embedded lattice layers. It consists of four terms:

Ĥemb(kx,iωn) = ĤN
bhz(kx) + �̂(iωn)

+ ŝL(kx,iωn) + ŝR(kx,iωn), (6)

where ĤN
bhz(kx) denotes the one-electron part of the Hamilto-

nian in Eq. (1). The superscript N emphasizes the fact that

ĤN
bhz is a 2N × 2N matrix for an isolated slab. The second

term in Eq. (6) is the Coulomb self-energy. Within single-site

DMFT, it is layer diagonal and kx independent:

〈yα|�̂|y ′α′〉 = �αα′ (y,iωn)δy,y ′ . (7)

The last two terms in Eq. (6) are the embedding potentials.

Since Ĥbhz in Eq. (1) includes only nearest-neighbor hopping

terms, ŝL (ŝR) is nonvanishing only when both layer indices

are equal to yL (yR), the outermost layer of the embedded slab

region on the left- (right-) hand side. Thus they are written as

〈yα|ŝL|y ′α′〉 = sL
αα′(kx,iωn)δy,yL

δy ′,yL
, (8)

〈yα|ŝR|y ′α′〉 = sR
αα′ (kx,iωn)δy,yR

δy ′,yR
. (9)

We now explain how we can derive the embedding potential

for the left-hand side. We assume that the electronic structure

in the half-space to the left of the embedded slab region

converges to that of the bulk crystal with Coulomb repulsion

energy UL. Thus, within the single-site approximation, the

Coulomb self-energy of all layers is assumed to be identical

to that in the interior of the bulk with UL, �̂L(iωn). This

quantity is a 2 × 2 matrix in orbital space. Now, let us consider

the Green’s function of the semi-infinite solid in which the

self-energies of all layers are equal to �̂L(iωn). We extract

from this Green’s function a 2 × 2 matrix spanned by the two

orbital components of the outermost surface layer, which is

denoted by gL
αα′ (kx,iωn). The embedding potential, i.e., the

2 × 2 matrix appearing on the right-hand side of Eq. (8), is

then given by [24]

ŝL(kx,iωn) = t̂+ĝL(kx,iωn)t̂−, (10)

with

t̂+ =

(

t1 t12

−t12 t2

)

, t̂− =

(

t1 −t12

t12 t2

)

, (11)

where t+ (t−) is the transfer matrix for electrons which hop

between two nearest-neighbor lattice layers toward the positive

(negative) y direction.

In order to obtain ĝL in Eq. (10), we use the following

trick. We add one additional lattice layer having the bulk self-

energy �̂L on top of the semi-infinite substrate expressed by

the embedding potential ŝL. Then, the 2 × 2 surface Green’s

function of the resultant new semi-infinite solid is given by

ĝL =
[

iωn + µ − ĤN=1
bhz (kx) − �̂L(iωn) − ŝL

]−1
, (12)

where ĤN=1
bhz (kx) is given by

ĤN=1
bhz (kx) =

(

ǫ1 − UL

2
+ 2t1 cos kx 2t12 sin kx

2t12 sin kx ǫ2 − UL

2
+ 2t2 cos kx

)

.

(13)

Since the semi-infinite solid with the additional layer is again a

semi-infinite solid (all layers carry the same bulk self-energy),

ĝL on the right-hand side of Eq. (10) must coincide with ĝL

calculated by Eq. (12). Thus, by inserting ĝL in Eq. (12) into

the right-hand side of Eq. (10), one obtains a set of equations

to determine the three independent elements of the embedding

potential, sL
αα′ for given kx and ωn. In contrast to one-band

models, for which one can derive an analytical expression of
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the embedding potential from a quadratic equation obtained

by following the same procedure as described above [24], the

embedding potential for the present two-band model can be

computed only numerically. To determine ŝL, one needs the

bulk self-energy �L(iωn) in Eq. (12), which can be determined

from an independent DMFT calculation for the 2D bulk system

with Coulomb repulsion energy UL, before evaluating the

interface properties.

Similarly, the embedding potential for the right-hand side

can be derived by combining the two following equations:

ŝR(kx,iωn) = t̂− ĝR(kx,iωn)t̂+, (14)

ĝR =
[

iωn + µ − ĤN=1
bhz (kx) − �̂R(iωn) − ŝR

]−1
, (15)

where �R(iωn) denotes the Coulomb self-energy of the 2D

bulk system with Coulomb interaction UR .

C. DMFT equation and exact diagonalization

Starting from some initial self-energy matrix, one calculates

the local components of the lattice Green’s function for each

layer, gαα′ (y,iωn) = Gpα,pα′ (iωn), by using Eq. (5). Then, the

bath Green’s function determining the Weiss mean field of

layer y (y = 1 . . . N) is obtained by removing the local self-

energy:

ĝ0(y,iωn) = [ĝ−1(y,iωn) + �̂(y,iωn)]−1, (16)

where �̂(y,iωn) is the 2 × 2 matrix defined by Eq. (7).

To evaluate the layer-dependent self-energy, the following

procedure is employed.

In the present work, the quantum impurity problem is

solved by making use of the exact diagonalization (ED)

formalism [26–28], in which ĝ0(y,iωn) is approximated by

a noninteracting Green’s function of a finite cluster consisting

of two impurity levels with energy Eα coupled to nb bath

orbitals with energy ǫk . Thus

ĝ0(y,iωn) ≈ ĝcl,0(y,iωn) = [iωn + µ − ĥcl(y,iωn)]−1,

(17)

with

ĥcl
αα′(y,iωn) = Eα δαα′ +

nb
∑

k=1

vαkvkα′

iωn − ǫk

, (18)

where Eα , ǫk , and vαk are real fitting parameters chosen

such that the weighted sum of |ĝ0 − ĝcl,0|2 over a sufficiently

large Matsubara frequency range is minimized for each of

the N layers of the embedded region [28]. (To simplify the

notation, the y dependence of the fitting parameters Eα , ǫk , and

vαk is not explicitly indicated.) Then, after adding the on-site

Coulomb repulsion terms Eq. (4) to this (2 + nb)-level cluster,

the interacting Green’s function of the cluster, ĝcl(y,iωn), is

derived by combining the Arnoldi algorithm for computing the

lowest eigenstates with the Lanczos procedure for calculating

the Green’s function [27]. Finally, the cluster self-energy is

obtained from the equation

�̂cl(y,iωn) = [ĝcl,0(y,iωn)]−1 − [ĝcl(y,iωn)]−1. (19)

In the ED formalism, the cluster self-energy of each layer

is assumed to be a physically reasonable representation of

the lattice self-energy of that layer. Thus �̂cl(y,iωn) is used

as the input self-energy �̂(y,iωn) in Eq. (5) for the next

DMFT iteration. This procedure is iterated until the difference

between the input and output self-energy matrices for all layers

in the embedded region becomes sufficiently small. In the

calculation presented in the next section, we use nb = 8 bath

orbitals (4 per orbital), so that the total number of energy levels

per cluster equals 10. Since the embedded region typically

consists of N = 10 . . . 30 layers, at each iteration N DMFT

equations are solved.

III. RESULTS AND DISCUSSION

In the present work, the parameters of the noninteracting

part of the Hamiltonian are chosen as ǫ1 = −1, t1 = −1, ǫ2 =

1, t2 = 1, and t12 = 0.5. The same parameter set was used

previously in Ref. [6]. We consider only the electron-hole

symmetric case with chemical potential µ = 0. In the absence

of correlations, the bulk bands extend from −3 to +3 and the

band gap from −1 to +1. Unless otherwise stated, the DMFT

calculations are performed at a relatively small temperature:

T = 1/β = 0.01.

A. Bulk phase diagram

Figure 2 illustrates schematically the bulk phase diagram

of the constituents of the present heterostructure. At small U ,

one has a weakly correlated topological band insulator which

corresponds to the system on the left-hand side in Fig. 1.

At large U , the system becomes a Mott insulator which is

taken to be the dominant phase on the right-hand side of

the interface. We note that in the present model the Mott

insulating phase is nontopological with a vanishing Chern

number, in contrast to the topological Kondo insulator [34,35].

The band gap in the band insulator also varies with U . It

is largest in the noninteracting limit and gradually decreases

with increasing U until U approaches Uc2(T ). This behavior

corresponds to the usual band-narrowing effect, which has

been discussed in previous work [36,37]. As a result of local

Coulomb interactions, spectral weight within the region of the

bulk bands is transferred to low energies and Hubbard bands

appear at high energies. For the parameters specified above,

we find that the coexistence region is limited by the boundaries

Uc1 ≈ 11.4 and Uc2 ≈ 13.4 at T = 0.01. Because of the

first-order nature of the Mott transition, various quantities,

such as the orbital polarization, the double occupancy of

the subbands, the spectral weight at the chemical potential,

etc., exhibit the usual hysteresis behavior (not shown here).

An important aspect of the interface properties discussed in

Sec. III D is the fact that they may be used to determine the

relative stability of the band and Mott insulating phases in

the coexistence region. For instance, at T = 0.01 we estimate

Ub ≈ 13.0.

As will be shown below, an edge state appears at the

interface of a weakly correlated topological band insulator and

a strongly correlated Mott insulator. The intriguing question

then arises of what happens to the edge state when the Coulomb

energy in the Mott insulator lies within the coexistence region.

Depending on the precise values of U and T , the Mott

insulating phase can become unstable and may therefore be
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FIG. 3. (Color online) Variation of edge state at bare surface of

correlated topological band insulator as a function layer index y for

various Coulomb energies U , as calculated within inhomogeneous

DMFT. Plotted is the function −βg11(y,β/2), defined in Eq. (20),

which represents the partially integrated density of states within a

few T of the chemical potential (T = 0.01). The embedding region

at the surface comprises N = 12 atomic layers beyond which bulk

behavior is assumed.

converted into a band insulating phase. Before we discuss this

case, we consider in the following two subsections (i) the

behavior of the edge state at the bare surface of a topological

band insulator and (ii) the properties of the interface between

two topological insulators. These results serve as a useful

reference for the subsequent analysis of the interface with

a Mott insulator.

B. Edge state at solid-vacuum interface

Figure 3 shows the spectral weight near the chemical

potential at the surface of a correlated topological band

insulator as a function of distance from the surface for several

values of U . Plotted is the function −βg11(y,β/2) which

provides a measure of the DOS within a few T of the chemical

potential. This quantity is defined as

−βgαα(y,β/2) = −
∑

n

gαα(y,iωn) e−iωnβ/2

= π

∫ ∞

−∞

dω F (ω)Nα(ω), (20)

where Nα(ω) = − 1
π

Imgαα(y,ω + iδ) is the interacting DOS

of subband α and the weight function F is defined as

F (ω) = 1/[2πT cosh (ω/(2T ))]. (The width of F is about

5.3T ; its integrated weight is unity.) As a result of particle-hole

symmetry, g11(y,β/2) = g22(y,β/2).

At the surface of a topological insulator, a metallic edge

state connecting the bulk valence and conduction bands

appears. As the chemical potential is located at the middle

of the energy gap when the system is electron-hole symmetric,

the edge state contributes to an increase in DOS at µ for

several surface layers, which is clearly seen in Fig. 3. With

increasing values of U , the gap in the topological band

insulator diminishes due to correlation effects, so that the

penetration depth of the edge state increases. The peak of

the edge state at larger U also shifts to the second layer (see

below). At the same time, the high-energy tails of F (ω) on both

FIG. 4. (Color online) Intensity plot of interacting DOS summed

over two orbital components with spin σ = 1 in surface layer of

semi-infinite topological insulator as a function of parallel momentum

kx for several values of U (N = 12 and T = 0.01).

sides of ω = 0 start overlapping with the bulk bands due to

band-gap narrowing. For U > 8, this results in a rapid increase

in the calculated values of −βg11(y,β/2) in the interior of the

solid.

To illustrate the energy dispersion of the edge state with kx

in the case of a free surface, we show in Fig. 4 the kx-resolved

DOS of the first layer (y = 1) for various Coulomb energies.
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These results were derived by extrapolating the self-energy

from the Matsubara axis to real energies via the routine ratint

(for details, see Ref. [28]) and then evaluating the integrand on

the right-hand side of Eq. (5). One can clearly see a metallic

edge state crossing the chemical potential µ = 0 at kx = π

with a positive group velocity. This indicates that the increase

in DOS seen in Fig. 3 for surface layers arises from the edge

state around kx = π . The energy dispersion curve of the edge

state for the down-spin (not shown) is obtained by reflecting

the one for the up-spin shown in Fig. 4 with respect to kx = π ,

so that the two dispersion curves with the opposite spins cross

at kx = π .

With increasing U , the dispersion of the edge state becomes

flatter and the bulk band gap is reduced. Also, the width of the

bulk bands decreases and Hubbard bands appear below and

above the band region. Since the weight function F (ω) in

Eq. (20) acts nearly like a δ function at low T , the correlation

FIG. 5. (Color online) Interacting DOS, Nα(ω), in first three

surface layers of topological insulator at U = 2 (N = 12 and T =

0.01). Solid (red) curves: orbital α = 1; dashed (blue) curves: α = 2.

These spectra are derived by extrapolating the lattice Green’s function

from Matsubara frequencies to ω + iγ with a small imaginary energy

γ = 0.05 via the routine ratint. The spectral weight near µ = 0 in

panel (a) is due to the metallic edge state, while the DOS in panel (c)

approaches the one characteristic of the bulk band gap.

induced band narrowing of the edge state gives rise to an

increase of −βg11(y,β/2). As shown in Fig. 3, this is indeed

the case for layers y > 2. Remarkably, this increase of density

for y > 2 is compensated by a corresponding decrease for

layers y = 1 and 2, so that the layer-integrated weight of the

edge state close to µ remains nearly constant.

According to the dispersions shown in Fig. 4, the DOS of

the edge state in the surface layer has the typical shape of

a one-dimensional tight-binding system, with a minimum at

the center and logarithmic van Hove singularities at the band

limits. This is illustrated in Fig. 5(a) for U = 2. Panels (b)

and (c) indicate how this one-dimensional metallic spectral

distribution converts to the one of the topological band

insulator as one moves away from the surface. We also note

that the DOS at ω = µ in Fig. 5 decays with increasing y

more slowly than −βg11(y,β/2) in Fig. 3 owing to a small

imaginary energy γ = 0.05 introduced in extrapolating the

lattice Green’s function. The peaks at larger energies are

sensitive to details of the extrapolation procedure.

As will be seen in Sec. III D, the low-energy spectral

distribution of the edge state of the bare surface shown in

Fig. 5 differs qualitatively from the one of the edge state at

the interface between a topological band insulator and a Mott

insulator. The main reason is the appearance of a Kondo peak

in the Mott insulator and a new single-particle feature at µ at

the surface of the topological insulator.

C. Interface between topological band insulators

Figure 6(a) shows the partially integrated DOS

−βg11(y,β/2) at the interface between a weakly correlated

topological band insulator (UL = 2) and more strongly cor-

related ones (UR = 6 . . . 12) as a function of layer index y.

(The embedding region consists of 10 layers on the left and

20 layers on the right of the interface.) These curves vary

monotonously across the interface between two asymptotic

values of −βg11(y,β/2) which are the same as those in

the interior of the semi-infinite solid shown in Fig. 3. As

mentioned above, the asymptotic values start growing due to

band narrowing only for U > 8. Therefore, the curves for

U = 6 and 8 in Fig. 6(a) are practically constant throughout

the system, while the curves for U = 10 and 12 exhibit

a smooth variation between the two asymptotic values.

Evidently, there is no sign of a topological edge state at the

interface.

Figure 6(b) shows the occupancy n1 as a function of layer

index y for the three systems shown in panel (a). As we

consider electron-hole symmetric systems, the occupancies

of the two orbitals are related by n2 = 1 − n1. It is seen that

the orbital polarization, i.e., n1 − n2, is strongly reduced in the

right-hand system with increasing values of Coulomb energy

U . (At the Mott transition, both orbitals become half-filled,

i.e., n1 = n2 = 0.5.) Whereas the variation of n1 occurs very

rapidly within one or two layers near the interface, the variation

of −βg11(y,β/2) for UR > 8 is more gradual and comparable

to the one at the bare surface shown in Fig. 3. This difference

is related to the fact that, because of the finite width of

the weight function F (ω), g11(y,β/2) is mainly sensitive to the

density of states of the low-energy bulk bands, in particular, at

larger U , when the band gap shrinks.
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FIG. 6. (Color online) (a) Partially integrated spectral weight,

−βg11(y,β/2), and (b) occupancy n1 of orbital α = 1 as functions

of layer index near the interface between two correlated topological

band insulators at T = 0.01. The systems on the left and right sides

have local Coulomb energies UL = 2 and UR = 6 . . . 12, respectively.

The location of the interface is indicated by the dashed line. The

embedding region consists of 10 layers on the left and 20 layers on

the right side of the interface (N = 30). The asymptotic behavior is

derived from DMFT calculations for the respective bulk materials.

D. Interface between topological band and Mott insulators

We now discuss in more detail the properties of the

edge state between a topological band insulator (UL = 2)

and a Mott insulator whose Coulomb energy is close to the

coexistence region. To obtain the self-consistent solution of

the layer-coupled DMFT equation, we adopt the following

procedure. On the left (right) boundary of the embedded

region, we apply the embedding potential for a semi-infinite

solid in the topological insulator phase with UL = 2 (Mott

insulator phase with varying value of UR), so that the physical

states in the asymptotic regions are fixed. Within the embedded

region, the initial values of the cluster parameters in Eq. (18),

which determine the initial Weiss mean field for each layer, are

taken to be the parameters representing the bulk topological

insulator with UL (Mott insulator with UR) to the left (right)

of the interface boundary. Thus, roughly speaking, initially

the system to the left (right) of the boundary surface is in the

topological insulator (Mott insulator) phase. We then proceed

with the standard DMFT iteration procedure, in which the

self-energy and the cluster parameters of the layers in the

embedded region are updated according to the prescription

described in Sec. II. The iteration procedure is repeated

until the local self-energy and Green’s function of each layer

converge and no longer change with further iterations.

Figure 7(a) shows the partially integrated DOS

−βg11(y,β/2) at µ = 0 for several values of UR as a function

FIG. 7. (Color online) (a) Edge state at interface between topo-

logical band insulator (left) and Mott insulator (right). Shown is

the partially integrated density of states −βg11(y,β/2) of orbital

α = 1 as a function of layer index at T = 0.01. The embedding

region consists of N = 21 layers: 6 layers at UL = 2 and 15 layers

in the range UR = 13 . . . 15. Outside the embedding range, bulk

behavior is assumed. The location of the edge state is seen to be

a sensitive function of the Coulomb energy in the Mott insulator.

The maximum value −βg11(β/2) ≈ 0.33 is associated with the

Kondo peak. (b) Amplitude of the edge state as a function of layer

index at UR = 12.75 for increasing numbers of iterations in the

self-consistency procedure. The maximum due to the Kondo peak is

seen to shift toward the right-hand side of the embedding region. The

solid vertical line locates the phase boundary between topological and

Mott insulating phases, with both having the same Coulomb repulsion

U = 12.75, at the 160th DMFT iteration.

of layer index y. This quantity exhibits a prominent maximum

near the interface which is associated with the edge state

appearing at the phase boundary between the topological and

Mott insulators. The edge state for UR = 15 is seen to be

well localized at the interface. The Mott gap in the right-hand

system at this Coulomb energy is rather large, so that the

edge state decays rapidly into the Mott insulator. In the band

insulating system on the left side, the gap is also large, so that

the shape of the edge state in this region is similar to the one

at the insulator-vacuum interface shown in Fig. 3.

We point out that the amplitude of −βg11(y,β/2) in the first

layer of the Mott insulator for UR = 15 is significantly larger

than in the surface layer of the topological band insulator. This

enhancement is related to the fact that, as a result of a proximity

effect, a Kondo resonance appears in the Mott insulator due

to the screening of the localized spins via the helical edge
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FIG. 8. (Color online) (a) Interacting DOS, Nα(ω), at interface

between topological band insulator (UL = 2) and Mott insulator

(UR = 15) with N = 21 at T = 0.01 as in Fig. 7. Solid (red) curves:

orbital α = 1; dashed (blue) curves: orbital α = 2. Panels (a) and

(b) correspond to two surface layers on the right of the interface

(y = 14,15 in Fig. 7) and panels (c) to (f) to four surface layers on

the left of the interface (y = 16 . . . 19). These spectra are obtained

by extrapolating the lattice Green’s function to ω + iγ with a small

imaginary energy γ = 0.05 via the routine ratint. The central spectral

feature in panel (b) corresponds to the Kondo peak induced in the Mott

insulator via the usual proximity effect due to the metallic edge state,

while in panel (c) the low-energy feature is induced in the surface layer

of the topological insulator via a reverse proximity effect caused by

the Kondo peak. Inset of panel (b) shows Nα(ω) in a smaller ω region

corresponding to the Kondo peak obtained with smaller γ = 0.01.

states [16]. Thus the interface may be viewed as a Kondo

lattice, where the metallicity is associated with the edge state

induced by the topological band insulator. This is illustrated

in Fig. 8, which shows the variation of the interacting DOS

with layer index for UL = 2, UR = 15. In the first layer of

the Mott insulator [panel (b)], the DOS at low energies has a

three-peak structure, consisting of Kondo peak and van Hove

singularities at the limits of the edge state. The maximum of

−βg11(y,β/2) ≈ 0.33 at y = 15 [see Fig. 7(a)] can therefore

serve as a signature of the Kondo peak. In the second layer,

only a weak remnant of this peak is observed. In contrast,

the first layer of the band insulator is dominated by the van

Hove features of the one-dimensional metallic edge state. The

deeper layers reveal the appearance of the bulk band gap, in

close correspondence to the behavior at the bare surface shown

in Fig. 5.

As can be seen in Fig. 8(c), the DOS near ω = µ in the

surface layer of the topological insulator is enhanced due to

the presence of the Mott insulator. This is also evident by

comparing −βg11(y,β/2) ≈ 0.12 for U = 2 at the free surface

(see Fig. 3) with the corresponding value (≈0.18) in the surface

layer for UL = 2 [Fig. 7(a)]. Thus the Kondo peak in the Mott

insulator gives rise, via the single-particle hopping across the

interface, to a low-energy spectral feature at the surface of the

topological band insulator. Note that this feature is also present

for UL = 0. It is therefore not induced by the small local

self-energy in the band insulator, but by the large self-energy

in the neighboring layer exhibiting the Kondo peak. This

mechanism may therefore be viewed as a “reverse proximity

effect,” in contrast to the usual one, in which the metal states

induce the Kondo peak in the Mott insulator. This kind of

“feedback” effect occurs also at interfaces between ordinary

metals and Mott insulators (see, for instance, the small peak

for x = 0 in Fig. 1 of Ref. [22]). In the latter case, however,

this effect is very small because of the dominant metallic

DOS. In the present heterostructure, this effect is much more

pronounced because of the minimum of the density of states

of the edge state in the surface layer of the topological band

insulator.

So far we have discussed the formation of the Kondo peak

for UL = 2 and UR = 15. Returning to Fig. 7(a), we point

out that, when the Coulomb energy UR in the right-hand

system is lowered, the maximum of the edge state shifts away

from the interface toward the interior of the Mott insulator.

Evidently, due the proximity of the topological band insulator,

the topological band insulating phase is more stable in the

surface region of the Mott insulator, so that the effective

boundary between the topological and Mott phases moves

away from the physical interface. From a numerical point of

view, one observes that the self-energy and cluster parameters

of the boundary layers are converted from those characteristic

of the Mott insulator phase to those characteristic of the

topological insulator phase with increasing iterations, in a

layer-by-layer fashion, starting from the first boundary layer,

toward the interior of the Mott insulator, until no further phase

conversion of layers takes place.

Note that for the lowest two Coulomb energies shown in

Fig. 7(a) (UR = 13.0 and UR = 13.2), the Mott insulator is

within the bulk coexistence region (Uc2 ≈ 13.4; see Fig. 2), so

that the actual phase depends sensitively on the properties near

the interface. For UR = 13.2, the bulk Mott insulator phase is

more stable than the bulk topological insulator phase, so that

the DOS profile shown in Fig. 7(a) does not shift any more

with further iterations. On the other hand, UR = 13.0 seems

to be very close to Ub, so that one needs hundreds of iterations

to reach the DOS profile in Fig. 7(a). It is to be noted that

to ensure the persistence of the edge state at these Coulomb

energies, the bulk phase in the asymptotic region on the right-

hand side is assumed to be Mott insulating. As discussed in

the previous subsection, if instead both constituents of the

heterostructure are topological band insulators, the edge state

disappears.

To illustrate this delicate balance between topological and

Mott insulating solutions in the interface region, we show in

Fig. 7(b) the edge state for UL = 2 and UR = 12.75. Beyond

the 15 surface layers of the right-hand system, bulk Mott

insulating behavior is assumed. In addition, these 15 layers

are initially assumed to be in the Mott insulating phase. With

increasing number of iterations, the peak of the edge state is

seen to shift toward the right side of the embedded region.

Apparently, at UR = 12.75, the bulk topological insulator
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FIG. 9. (Color online) Edge state at interface between topolog-

ical band insulator and Mott insulator in the coexistence region

with UL = UR = 13 and N = 20 at T = 0.01. The Mott gap at this

Coulomb energy is much larger than the topological band gap. Thus

the asymptotic value of −βg11(y,β/2) on the right-hand side is much

lower than on the left-hand side, and the decay of the edge state

within the Mott insulator is more rapid. The vertical bar denotes the

Kondo peak in the surface layer of the Mott insulator at the effective

boundary with the topological band insulator.

phase is more stable than the bulk Mott insulator phase, so that

the conversion of layers from the Mott phase to topological

phase does not stop until all layers in the embedded region are

converted. In other words, for this value of UR , one cannot find

a stable Mott solution of the DMFT equation in contrast to the

cases with larger UR shown in panel (a). The marked increase

of spectral weight between layers 15 and 16 reflects the fact that

the nominal boundary of the heterostructure now comprises

neighboring topological insulating phases for different values

of U (see Fig. 6). Accordingly, the shape of the “buried”

edge state within the right-hand system approaches that at the

interface between systems with identical Coulomb energies

in the coexistence range, but with topological band insulating

and Mott insulating phases present on either side.

The edge state in such a case is shown in Fig. 9 for

UL = UR = 13, where bulk Mott insulating (bulk topological

band insulating) behavior is enforced on the right (left)

side of the embedding region, respectively. The asymptotic

value of −βg11(y,β/2) on the right-hand side is very small be-

cause of the large size of the Mott gap. For the same reason, the

decay of the edge state in the Mott insulator is more rapid than

within the band insulator. The spatial distribution of this edge

state is very similar to the one in Fig. 7 deep within the nominal

Mott insulator. As stated above, since UL = UR = 13 is very

close to Ub at T = 0.01, the bulk topological insulator on the

left-hand side and the bulk Mott insulator on the right-hand

side have nearly the same stability. Therefore, the DOS profile

in Fig. 9 does not move with additional DMFT iterations.

Evidently, the phenomenon observed in Fig. 7 is a proximity

effect, where the band insulating properties on one side of the

interface are induced up to a certain depth on the other side, for

instance, via the penetration of the edge state wave function

across the boundary layer, although asymptotically this side

is a Mott insulator. The boundary between band and Mott

insulating phases then does not coincide with the nominal

interface.

This proximity effect is particularly large when the

Coulomb energy in the Mott insulating phase, UR , lies within

the coexistence range of the two phases, i.e., Uc1 < UR < Uc2.

Moreover, the penetration of the topological insulating phase

into the interior of the Mott phase as seen in Figs. 7(a) and 7(b)

can occur only when Uc1 < UR < Uc2. In other words, this

phenomenon arises only when the phase transition between

the two insulating phases is of first order. Nevertheless, a

similar proximity effect might occur even when the phase

transition is continuous, at least within one or two layers near

the interface. An example supporting this assertion is the result

for UR = 13.5 in Fig. 7(a). This value of UR is larger than Uc2,

so that a topological bulk insulating solution does not exist at

T = 0.01. In spite of this, the phase boundary is shifted by

one layer away from the nominal interface in comparison with

the boundary for UR = 15. Hence the coexistence of two bulk

solutions is not a necessary condition for the proximity effect

to exist.

The results discussed above suggest that the embedding

scheme might be useful for the study of the relative stability of

coexisting phases in DMFT calculations. Let us assume UL =

UR = U lies in the coexistence domain, with band insulating

(Mott insulating) properties enforced on the left (right) side of

the embedded region. As long as Uc1(T ) < U < Ub(T ), the

topological band insulating solution is more stable, so that the

edge state will be located at the right boundary of the embedded

region. Conversely, if Ub(T ) < U < Uc2(T ), the Mott phase

is more stable, so that the edge state shifts toward the left

boundary.

E. Temperature dependence

So far, we have presented numerical results obtained

at T = 1/β = 0.01. Before closing this section, we briefly

discuss the temperature dependence of the interface electronic

structure. To understand this dependence, it is important to note

that, according to the bulk phase diagram shown in Fig. 2,

the phase boundary between the band and Mott insulating

phases, Ub, shifts to higher Coulomb energies with decreasing

temperature, thereby increasing the stability range of the

topological band insulator. As a result, while the buried edge

state with UR = 13 shown in Fig. 7(a) is stable at T = 0.01, it

becomes unstable when T is reduced to T = 1/400. Since

Ub at this lower temperature is larger than UR = 13, the

buried edge state for UR = 13 at T = 1/400 continues to move

toward the right-hand side, in analogy to the behavior shown

in Fig. 7(b) for UR = 12.75 at T = 0.01.

To ensure a stable phase boundary also at lower T ,

we consider now the interface between a topological band

insulator with UL = 2 and a Mott insulator with UR = 15. As

in Fig. 7, the embedding region consists of 21 layers (6 layers

with UL = 2; 15 layers with UR = 15). Figure 10(a) shows

the partially integrated density of states −βg11(y,β/2) for

several temperatures. The curve for β = 100 is the same as

that in Fig. 7(a) with UR = 15. On the topological insulator

side (y � 16), −βg11(y,β/2) is seen to depend very little on

temperature for T � 0.01. This finding signifies two points.

First, the interacting DOS, N1(ω), is nearly constant within the

energy scale of the width of the weight function F (ω). In fact,

as seen from the spectral distributions shown in Figs. 8(c)–8(f),
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FIG. 10. (Color online) (a) Temperature dependence of partially

integrated density of states −βg11(y,β/2) as a function of layer index

for an interface between topological insulator with UL = 2 (y � 16)

and a Mott insulator with UR = 15 (y � 15). (b) −Img11(y,iωn)/π

of the same interface system as a function of Matsubara frequency

for four lattice layers near the interface (y = 14 . . . 17).

N1(ω) is a rather smooth function of ω near µ = 0. Secondly,

at low T this DOS value at µ = 0 does not depend on T .

On the other hand, Fig. 10(a) demonstrates that, on the Mott

insulator side, −βg11(y,β/2) varies sensitively as a function

of T . As argued above, the large value of −βg11(y,β/2)

at the interface layer (y = 15) at T = 0.01 originates from

the Kondo resonance induced by the proximity effect. If

the center of this Kondo resonance were located exactly at

µ = 0, −βg11(y,β/2) would not decrease with decreasing

temperature. In reality, as seen from the inset of Fig. 8(b),

because of the nondegeneracy of the two orbitals α = 1,2, the

peak of N1(ω) is located at ω ≈ −0.04, so that −βg11(y,β/2),

which provides a measure of the DOS within a few T of µ = 0,

tends to decrease for T � 0.01. In contrast to layer y = 15, the

interacting DOS of layer y = 14 increases progressively with

decreasing T . Most naturally, this rise in the interacting DOS

may be interpreted as a formation of the Kondo resonance at

y = 14, since the Kondo temperature of this layer should be

smaller than the one for y = 15 because of its weaker coupling

to the metallic edge states.

While the DOS profile of −βg11(y,β/2) in Fig. 10(a)

appears similar on both sides of the interface, the physical

origin of the finite interacting DOS in the vicinity of µ = 0

on both sides is fundamentally different. In Fig. 8 we have

demonstrated this asymmetry in the electronic structure at the

interface by plotting the Green’s function at real energies.

Even without this extrapolation, this asymmetry becomes also

evident by analyzing the behavior of −Img11(y,iωn)/π as a

function of Matsubara frequencies, as shown in Fig. 10(b)

at T = 1/400 for four lattice layers on both sides of the

interface. On the Mott insulator side (y = 14, 15), one observes

a sharp peak structure in −Img11(y,iωn)/π at ωn ∼ 0, which

is reminiscent of the formation of the Kondo resonance

at low temperatures. On the other hand, −Img11(y,iωn)/π

on the topological insulating phase (y = 16, 17) exhibits a

minimum at ωn = 0, which is associated with the DOS of the

one-dimensional edge band.

IV. SUMMARY

The edge state at the interface between topological band and

Mott insulators has been investigated within inhomogeneous

DMFT. The generalized Bernevig-Hughes-Zhang two-band

model is used to describe the interplay between interorbital

hybridization and local Coulomb energy. The electronic

properties in the vicinity of the interface are treated self-

consistently by making use of the embedding scheme, where

the effect of the asymptotic semi-infinite bulk materials is

described in terms of complex local potentials. The finite-

temperature exact diagonalization method is employed to

evaluate the on-site many-body interactions.

The main result of this work is the observation that, close

to the critical Coulomb energy of the correlated topological

insulator, the edge state is expelled from the interface toward

the interior of the Mott insulator. Thus, as a result of

the proximity with the topological band insulator, the Mott

insulating phase within a certain depth is converted to a

topological band insulating phase, where the width of the

conversion region depends on the local Coulomb energy within

the Mott insulator. With increasing Coulomb energy, the Mott

gap widens and the topological edge state is pushed again

toward the interface. Its decay within the Mott insulator then

becomes more rapid. At Coulomb energies below the Mott

transition, the edge state ceases to exist since in this case

the interface corresponds to that between two weakly and

moderately correlated topological band insulators.

The origin of the interface-induced conversion from Mott

insulating to band insulating behavior is the coexistence region

associated with the first-order nature of the Mott transition.

Depending on the temperature of the sample, either the Mott

insulating or the band insulating solution is more stable at a

given value of the local Coulomb energy. These results suggest

that the embedding method might be useful to determine the

relative stability of Mott and band insulating phases in DMFT

calculations.

We have also shown that the normal proximity effect, where

a Kondo peak in a Mott insulator is induced via neighboring

metallic states, gives rise to a reverse proximity effect, where

the Kondo peak leads to an enhanced density of states at the

surface of the neighboring metal.

There is currently a rapid progress in the search for

new classes of 2D materials exhibiting nontrivial topolog-

ical properties such as silicene [38] and stanene [39,40].

The topological order of these materials can be tuned by

applying an external field or by slightly modifying chemical

205134-10



BURIED TOPOLOGICAL EDGE STATE ASSOCIATED WITH . . . PHYSICAL REVIEW B 90, 205134 (2014)

composition. This might allow constructing an interface

between a topological insulator and a normal band insulator,

at which one-dimensional edge states appear. It would be

interesting to study if the proximity effect analogous to that

discussed in the present work occurs also at such interfaces

when the spin-orbit coupling in both insulators is large

enough. Also, while the valence bands of the above-mentioned

materials are predominantly of s and p character, it might

be possible to synthesize strongly correlated 2D topological

insulators if the valence band width can be reduced by some

means. Future experimental research in this direction is desired

in order for the proximity effect discussed in the present work

to be observed.
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