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The electronic structure at the interface between a topological band insulator and a Mott insulator is studied
within layer dynamical mean field theory. To represent the bulk phases of these systems, we use the generalized
Bernevig-Hughes-Zhang model that incorporates the Hubbard-like on-site Coulomb energy U in addition to the
spin-orbit coupling term that causes band inversion. The topological and Mott insulating phases are realized by
appropriately choosing smaller and larger values of U, respectively. As expected, the interface is found to be
metallic because of the localized edge state. When the Coulomb energy in the Mott insulator is close to the critical
value, however, this edge state exhibits its largest amplitude deep within the Mott insulator rather than at the
interface. This finding corresponds to a new type of proximity effect induced by the neighboring topological band
insulator and demonstrates that, as a result of spin-orbit coupling within the Mott insulator, several layers near the
interface convert from the Mott insulating phase to a topological insulating phase. Moreover, we argue that the
ordinary proximity effect, whereby a Kondo peak is induced in a Mott insulator by neighboring metallic states,
is accompanied by an additional reverse proximity effect, by which the Kondo peak gives rise to an enhancement
of the density of states in the neighboring metallic layer.
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I. INTRODUCTION

The role of Coulomb correlations in topological band
insulators has recently received wide attention [1]. As a result
of spin-orbit coupling, the band structure of these materials
exhibits charge excitation spectra whose physical characteris-
tics can depend strongly on the Coulomb interaction. Iridium
compounds, such as Na,IrO3 and A,Ir,07 (A = Pr,Eu), have
recently been proposed as materials in which the interplay of
spin-orbit interaction and electronic correlation effects might
be important [2-4]. The phase diagrams of prototype two-
dimensional bulk systems of this kind were recently studied
by Rachel et al. [5] and Yoshida et al. [6]. It was shown that,
in the paramagnetic limit, such systems exhibit a first-order
quantum phase transition, where the weakly correlated phase
corresponds to a topological band insulator and the strongly
correlated phase to a Mott insulator.

At surfaces of topological insulators, metallic edge states
may exist which are protected against perturbations associated
with impurities and other interactions that do not break the
time-reversal symmetry of the system [7—11]. Because of these
unique properties, heterostructures involving topological band
insulators [12—-18] are presently of great interest since they
might be relevant for future technological applications. For
instance, as shown by Ueda et al. [16], the interface of a
topological band insulator and a Mott insulator also exhibits
an edge state which maintains its helical characteristics within
the Mott insulator. Moreover, the quasiparticle properties and
depth profile of this state within the Mott insulator depend
strongly on the local Coulomb energy.

In the present work we study the role of electronic
correlations at the interface between a topological insulator
and a Mott insulator. The important difference between our
approach and the one by Ueda ef al. [16] is that we include
spin-orbit coupling also within the Mott insulator. Thus,
with decreasing Coulomb energy, the Mott insulator does not
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become a metal but a topological band insulator. The electronic
properties in the vicinity of the interface are treated self-
consistently by using the layer dynamical mean field theory
(DMFT) [19-25]. Local many-body interactions are evaluated
via finite-temperature exact diagonalization (ED) [26-28].
Separate single-site DMFT calculations are performed for the
asymptotic semi-infinite bulk regions. Their influence on the
interface region is taken into account via complex embedding
potentials [29]. For simplicity, a square lattice geometry is
used, as illustrated in Fig. 1 [6,16,30]. To incorporate spin-orbit
interactions, the generalized two-orbital model by Bernevig,
Hughes, and Zhang (BHZ) [31] is used, which includes the
site-dependent Coulomb energy as well as the interorbital
hybridization.

The main result of this study is the displacement of the
edge state from the interface toward the interior of the Mott
insulator when the local Coulomb energy on the corresponding
side of the heterostructure is near the critical value for the
Mott transition. The edge state is then buried deeply within
the Mott insulator so that the boundary between the band and
Mott insulating phases no longer coincides with the physical
interface of the two constituents of the heterostructure. The
origin of this novel proximity effect is the fact that the Mott
transition is first order. As a consequence, within the co-
existence region topological band and Mott insulating phases
compete. Their relative stability depends sensitively on tem-
perature and local Coulomb energy. Moreover, because of the
penetration of the edge state wave function into the Mott
insulator, near the interface the properties of the nominal
Mott insulator are also influenced by the presence of the
neighboring topological band insulator. As a result, the Mott
insulating phase within a certain depth can be converted into
the more stable topological band insulating phase. The edge
state is thereby displaced away from the physical interface
which becomes the boundary between two weakly and strongly
correlated topological band insulators. As the Coulomb energy

©2014 American Physical Society



H. ISHIDA AND A. LIEBSCH

Embedded Region

Fol ;

U, Interface Ur

FIG. 1. (Color online) One-dimensional interface between two-
dimensional topological band and Mott insulators. The Coulomb
energies on the left and right side of the interface are defined as
U, and Uy, respectively. The electronic properties in the embedding
region are calculated self-consistently within the layer DMFT. The
properties of the asymptotic bulk regions are taken into account via
embedding potentials.

in the Mott insulator increases beyond the coexistence region,
the edge state is localized again at the interface. Its depth
within the Mott insulator diminishes as the Mott gap increases.
Below the coexistence domain, the edge disappears since the
heterostructure then consists of two correlated topological
band insulators.

We emphasize that the displacement of the edge state away
from the interface of the heterostructure is a consequence of
the interorbital hybridization (spin-orbit coupling) in the Mott
insulator. In the absence of spin-orbit coupling, the coexistence
domain involves trivial metallic and insulating phases so that
a topological band insulating solution does not occur. Thus, if
an edge state exists, it is localized at the physical interface.

We also demonstrate that the ordinary proximity ef-
fect [22,24,32,33], i.e., the appearance of a Kondo peak
in a Mott insulator due to neighboring metallic states, is
accompanied by an secondary reverse proximity effect, as a
result of which the Kondo peak leads to an increase of the
density of states (DOS) in the neighboring metallic layer.

The outline of this paper is as follows. Section II presents the
main aspects of the theoretical approach. In particular, we in-
troduce the generalized BHZ two-band model which provides
the basis for the topological band as well as Mott insulating
phases. Also, the embedding scheme is described in which the
effect of the asymptotic bulk materials on either side of the
interface are taken into account via complex local potentials.
Finally, the inhomogeneous layer DMFT is outlined, as well
as the finite-temperature exact diagonalization scheme for the
treatment of local many-body interactions. Section Il provides
the discussion of the results. We first present the phase diagram
of the asymptotic bulk materials and illustrate the edge state
at the solid-vacuum interface. The main part discusses the
electronic properties of the interface between topological band
and Mott insulators, in particular, the location of the edge state
as a function of the Coulomb energy within the Mott insulator.
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II. THEORY
A. Method

We consider a one-dimensional interface between a two-
dimensional (2D) topological band insulator (BI) and a 2D
Mott insulator (MI), which occupy the left and right half-
space, respectively. The x direction is parallel to the interface,
while the y axis, which points from left to right, is chosen as
the interface normal. To represent the semi-infinite systems
on both sides, we employ the generalized Bernevig-Hughes-
Zhang model,

H = Hyn, + Hin
= (Ho + Hy) + Hint (1)
The first term in the second line of Eq. (1),

. U\ .
Hy = Z (ea - Ty)npow + Z tzxcjmgcqaav (2)
(p.q).a.0

p.o,o

represents two tight-binding bands originating from two
orbitals, where c;w (Cpao) creates (annihilates) an electron
with orbital @ = 1,2 in spin state 0 =1 (1),—1 (|) on a
2D square lattice point at p = (x,y), with x and y giving
its x and y positions, respectively. In Eq. (2), €, and ¢,
are the site energy and nearest-neighbor hopping integral for
orbital ¢, U, is the Coulomb energy, which will be described

below, 7 pqs = czwcpw denotes the orbital occupation, and
the summation over p and g in the second term is taken over
nearest-neighbor lattice-point pairs. The second term in the
second line of Eq. (1), which arises from spin-orbit coupling
and is responsible for the opening of a topological energy band
gap, reads

2 . i0o T —ibo T
Hy = 112 E iole Cp2oCqlo +e Cplacq20']a 3
(p.q).0

where 0 specifies the hopping direction measured relative to
the x axis (0 = 0 and /2 correspond to the hopping to the
positive x and y directions, respectively). The last term in
Eq. (1),

Flint = Z UyﬁpaTﬁpalv (4)

p.a

expresses the on-site Coulomb repulsion between electrons
with opposite spin in the same orbital . We assume that
the Coulomb energy can vary with lattice layers, while it is
constant within the same layer. It should be noted that the
term —%Uyﬁ pao 10 Eq. (2) ensures that the system becomes
electron-hole symmetric when chemical potential u is chosen
as u = 0.

Yoshida et al. [6] studied the effect of strong Coulomb
correlations on a topological band insulator by applying single-
site DMFT [19] to periodic 2D bulk systems described by the
same generalized BHZ model. It was shown that the system
undergoes a quantum phase transition from a topological band
insulator to a Mott insulator when one increases the on-site
Coulomb energy U, while keeping the system nonmagnetic.
As schematically illustrated in Fig. 2, the phase transition
is of first order and exhibits hysteresis behavior, i.e., both
topological band and Mott insulating solutions are found if U
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FIG. 2. (Color online) Schematic bulk phase diagram of corre-
lated topological band insulator, derived within generalized BHZ
two-orbital model and single-site DMFT. In the region limited by the
lines U,.(T') and U (T '), band and Mott insulating states may coexist.
The true phase boundary defining the relative stability of these phases
is indicated by the line U,(T).

is within the coexistence region [U,;,U.,]. The width of this
region decreases with increasing temperature 7' and vanishes
at a critical value 7.

In the present work, both the topological band insulator
on the left half-space and the Mott insulator on the right
half-space are represented by the generalized BHZ model as
described above. As indicated in Fig. 1, the layer dependent
Coulomb energy, U,, is set to be Uy, and U in the left and right
half-spaces, respectively, where U, < U, and Ug > U, (see
Fig. 2 below). We note that our model differs from that in the
recent work of Ueda et al. [16], in which the Mott insulator
was represented by two independent Hubbard bands without
the spin-orbit coupling term defined in Eq. (3).

B. Embedding potential

We calculate the finite-temperature Green’s function of the
interface between two semi-infinite systems by using the layer
DMEFT technique [20]. A finite number of lattice layers in
the interface region is treated explicitly, whereas the effect
of the outer regions is taken into account via the embedding
potentials [29], which include correlation effects in the bulk
region [24]. As we consider nonmagnetic solutions in the
present work, the Green’s function and other quantities are
diagonal with respect to spin. In the following, we show only
the up-spin component of the equations and omit spin indices
for simplicity.

By introducing the wave number in the x direction, k,, the
Green’s function in the embedded region is given as

T dk, . ,
G o . ) = X iky(x—x")
pape (i) /_ﬂ 2716
x (ya|liw, + pu — Hemplke i)™ y'a'),
®)

where the embedding Hamiltonian in the mixed representation,

Hemp, 1s @ 2N x 2N matrix with N being the number of the
embedded lattice layers. It consists of four terms:

I:Iemb(kxaiwn) = I:IbNhZ(kx) + ﬁ:(la)n)
+ 85k iwp) + 8% (ks i), (6)

where I:Itﬁ]'z(kx) denotes the one-electron part of the Hamilto-
nian in Eq. (1). The superscript N emphasizes the fact that
Hbth is a 2N x 2N matrix for an isolated slab. The second
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term in Eq. (6) is the Coulomb self-energy. Within single-site
DMFT, it is layer diagonal and k, independent:

yalE]y'e') = o (,iwn)dy,y. @)

The last two terms in Eq. (6) are the embedding potentials.
Since Hyy, in Eq. (1) includes only nearest-neighbor hopping
terms, §© (§%) is nonvanishing only when both layer indices
are equal to y; (yr), the outermost layer of the embedded slab
region on the left- (right-) hand side. Thus they are written as

(ya |~§L |y/05/> = Sé‘a/(kx Jiwy, )Sy,y,_ (Sy’,y,‘ s )

<y0‘|§R|y/05/> = S(f(x’(kx’iw")ayv)’RS)’/J’R' C))

We now explain how we can derive the embedding potential
for the left-hand side. We assume that the electronic structure
in the half-space to the left of the embedded slab region
converges to that of the bulk crystal with Coulomb repulsion
energy Up. Thus, within the single-site approximation, the
Coulomb self-energy of all layers is assumed to be identical
to that in the interior of the bulk with U;, £, (iw,). This
quantity is a2 x 2 matrix in orbital space. Now, let us consider
the Green’s function of the semi-infinite solid in which the
self-energies of all layers are equal to ¥, (iw,). We extract
from this Green’s function a 2 x 2 matrix spanned by the two
orbital components of the outermost surface layer, which is
denoted by gofa,(kx,iwn). The embedding potential, i.e., the
2 x 2 matrix appearing on the right-hand side of Eq. (8), is
then given by [24]

§8(kysiwn) = £, 8% (kysiaon)i-, (10)

A I 2 A o —In
t, = , = , 11
* (—llz l‘2> <t12 5] ) an

where 7, (¢_) is the transfer matrix for electrons which hop
between two nearest-neighbor lattice layers toward the positive
(negative) y direction.

In order to obtain g~ in Eq. (10), we use the following
trick. We add one additional lattice layer having the bulk self-
energy ¥, on top of the semi-infinite substrate expressed by
the embedding potential §©. Then, the 2 x 2 surface Green’s
function of the resultant new semi-infinite solid is given by

with

8h =[ion +n — BYZ (k) — Sl — 547, (12)

where AY=!(k,) is given by

Y + 21, cos ky

FIbNh:l(kx) _ €1 — 2t15 sink, .
? 2t15 sink,

€ — % + 21, cos ky
(13)

Since the semi-infinite solid with the additional layer is again a
semi-infinite solid (all layers carry the same bulk self-energy),
&% on the right-hand side of Eq. (10) must coincide with g~
calculated by Eq. (12). Thus, by inserting g~ in Eq. (12) into
the right-hand side of Eq. (10), one obtains a set of equations
to determine the three independent elements of the embedding
potential, s, for given k, and w,. In contrast to one-band
models, for which one can derive an analytical expression of
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the embedding potential from a quadratic equation obtained
by following the same procedure as described above [24], the
embedding potential for the present two-band model can be
computed only numerically. To determine §°, one needs the
bulk self-energy X, (iw,) in Eq. (12), which can be determined
from an independent DMFT calculation for the 2D bulk system
with Coulomb repulsion energy U, before evaluating the
interface properties.

Similarly, the embedding potential for the right-hand side
can be derived by combining the two following equations:

§R (kv iwy) = 1= g% (kv i)y, (14)
N . AN= & . ~ -1
g8 =liwn +n— HY (k) — BrGiw,) — 557, (15)

where X z(iw,) denotes the Coulomb self-energy of the 2D
bulk system with Coulomb interaction Ug.

C. DMFT equation and exact diagonalization

Starting from some initial self-energy matrix, one calculates
the local components of the lattice Green’s function for each
layer, g (y,iw,) = G pa, po’ (iwy,), by using Eq. (5). Then, the
bath Green’s function determining the Weiss mean field of
layer y (y = 1...N) is obtained by removing the local self-
energy:

S iwy) =187 0iwy) + Siio)]™,  (16)

where $(y,iw,) is the 2 x 2 matrix defined by Eq. (7).
To evaluate the layer-dependent self-energy, the following
procedure is employed.

In the present work, the quantum impurity problem is
solved by making use of the exact diagonalization (ED)
formalism [26-28], in which §°(y,iw,) is approximated by
a noninteracting Green’s function of a finite cluster consisting
of two impurity levels with energy E, coupled to n;, bath
orbitals with energy €. Thus

(y.iwy) ~ g0y iw,) = [iw, + p — A (v, iw)] 7,
(17)
with
Vak Vka!

np
A (viiwy) = Ey Sgr + Y —— 18
o (s ) ];iwn_ek (18)

where E,, €, and vy are real fitting parameters chosen
such that the weighted sum of |§° — §-°|2 over a sufficiently
large Matsubara frequency range is minimized for each of
the N layers of the embedded region [28]. (To simplify the
notation, the y dependence of the fitting parameters E,, €;, and
Vgr 18 not explicitly indicated.) Then, after adding the on-site
Coulomb repulsion terms Eq. (4) to this (2 + n;)-level cluster,
the interacting Green’s function of the cluster, gd (y,iwy), is
derived by combining the Arnoldi algorithm for computing the
lowest eigenstates with the Lanczos procedure for calculating
the Green’s function [27]. Finally, the cluster self-energy is
obtained from the equation

2y iwp) = 8700, io)] ™ = 89 (yiw)] . (19)

In the ED formalism, the cluster self-energy of each layer
is assumed to be a physically reasonable representation of
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the lattice self-energy of that layer. Thus sl (v,iwy) is used
as the input self-energy 3(y,iw,) in Eq. (5) for the next
DMEFT iteration. This procedure is iterated until the difference
between the input and output self-energy matrices for all layers
in the embedded region becomes sufficiently small. In the
calculation presented in the next section, we use n, = 8 bath
orbitals (4 per orbital), so that the total number of energy levels
per cluster equals 10. Since the embedded region typically
consists of N = 10...30 layers, at each iteration N DMFT
equations are solved.

III. RESULTS AND DISCUSSION

In the present work, the parameters of the noninteracting
part of the Hamiltonian are chosenase; = —1,1; = —1,€; =
1, t, =1, and t;; = 0.5. The same parameter set was used
previously in Ref. [6]. We consider only the electron-hole
symmetric case with chemical potential i = 0. In the absence
of correlations, the bulk bands extend from —3 to +3 and the
band gap from —1 to +1. Unless otherwise stated, the DMFT
calculations are performed at a relatively small temperature:
T =1/8=0.01.

A. Bulk phase diagram

Figure 2 illustrates schematically the bulk phase diagram
of the constituents of the present heterostructure. At small U,
one has a weakly correlated topological band insulator which
corresponds to the system on the left-hand side in Fig. 1.
At large U, the system becomes a Mott insulator which is
taken to be the dominant phase on the right-hand side of
the interface. We note that in the present model the Mott
insulating phase is nontopological with a vanishing Chern
number, in contrast to the topological Kondo insulator [34,35].
The band gap in the band insulator also varies with U. It
is largest in the noninteracting limit and gradually decreases
with increasing U until U approaches U, (T'). This behavior
corresponds to the usual band-narrowing effect, which has
been discussed in previous work [36,37]. As a result of local
Coulomb interactions, spectral weight within the region of the
bulk bands is transferred to low energies and Hubbard bands
appear at high energies. For the parameters specified above,
we find that the coexistence region is limited by the boundaries
U,g~114 and U, ~ 134 at T = 0.01. Because of the
first-order nature of the Mott transition, various quantities,
such as the orbital polarization, the double occupancy of
the subbands, the spectral weight at the chemical potential,
etc., exhibit the usual hysteresis behavior (not shown here).
An important aspect of the interface properties discussed in
Sec. III D is the fact that they may be used to determine the
relative stability of the band and Mott insulating phases in
the coexistence region. For instance, at 7 = 0.01 we estimate
U, =~ 13.0.

As will be shown below, an edge state appears at the
interface of a weakly correlated topological band insulator and
a strongly correlated Mott insulator. The intriguing question
then arises of what happens to the edge state when the Coulomb
energy in the Mott insulator lies within the coexistence region.
Depending on the precise values of U and T, the Mott
insulating phase can become unstable and may therefore be
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FIG. 3. (Color online) Variation of edge state at bare surface of
correlated topological band insulator as a function layer index y for
various Coulomb energies U, as calculated within inhomogeneous
DMEFT. Plotted is the function —fBg;,(y,B/2), defined in Eq. (20),
which represents the partially integrated density of states within a
few T of the chemical potential (7 = 0.01). The embedding region
at the surface comprises N = 12 atomic layers beyond which bulk
behavior is assumed.

converted into a band insulating phase. Before we discuss this
case, we consider in the following two subsections (i) the
behavior of the edge state at the bare surface of a topological
band insulator and (ii) the properties of the interface between
two topological insulators. These results serve as a useful
reference for the subsequent analysis of the interface with
a Mott insulator.

B. Edge state at solid-vacuum interface

Figure 3 shows the spectral weight near the chemical
potential at the surface of a correlated topological band
insulator as a function of distance from the surface for several
values of U. Plotted is the function —gg;;(y,8/2) which
provides a measure of the DOS within a few T of the chemical
potential. This quantity is defined as

—B8uaa(¥,B/2) = — Z Sua(V,iwy) e @B/

=7 /00 dw F(w)N,(w),

o]

(20)

where N, (w) = —%Imgaa(y,w + i8) is the interacting DOS
of subband o and the weight function F is defined as
F(w) =1/[2n T cosh(w/(2T))]. (The width of F is about
5.3T;its integrated weight is unity.) As a result of particle-hole
symmetry, g11(y,8/2) = g2(y.B/2).

At the surface of a topological insulator, a metallic edge
state connecting the bulk valence and conduction bands
appears. As the chemical potential is located at the middle
of the energy gap when the system is electron-hole symmetric,
the edge state contributes to an increase in DOS at u for
several surface layers, which is clearly seen in Fig. 3. With
increasing values of U, the gap in the topological band
insulator diminishes due to correlation effects, so that the
penetration depth of the edge state increases. The peak of
the edge state at larger U also shifts to the second layer (see
below). At the same time, the high-energy tails of F(w) on both
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FIG. 4. (Color online) Intensity plot of interacting DOS summed
over two orbital components with spin o = 1 in surface layer of
semi-infinite topological insulator as a function of parallel momentum
k, for several values of U (N = 12 and T = 0.01).

sides of w = 0 start overlapping with the bulk bands due to
band-gap narrowing. For U > 8, this results in a rapid increase
in the calculated values of —Bg;1(y,8/2) in the interior of the
solid.

To illustrate the energy dispersion of the edge state with &,
in the case of a free surface, we show in Fig. 4 the k,-resolved
DOS of the first layer (y = 1) for various Coulomb energies.
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These results were derived by extrapolating the self-energy
from the Matsubara axis to real energies via the routine ratint
(for details, see Ref. [28]) and then evaluating the integrand on
the right-hand side of Eq. (5). One can clearly see a metallic
edge state crossing the chemical potential u =0 at k, = 7
with a positive group velocity. This indicates that the increase
in DOS seen in Fig. 3 for surface layers arises from the edge
state around k, = . The energy dispersion curve of the edge
state for the down-spin (not shown) is obtained by reflecting
the one for the up-spin shown in Fig. 4 with respect to k, = 7,
so that the two dispersion curves with the opposite spins cross
atk, = .

With increasing U, the dispersion of the edge state becomes
flatter and the bulk band gap is reduced. Also, the width of the
bulk bands decreases and Hubbard bands appear below and
above the band region. Since the weight function F(w) in
Eq. (20) acts nearly like a § function at low T, the correlation

0.4 T T

(a) y=1 [

0.3

0.2

0.1

N, (@)

®-p

FIG. 5. (Color online) Interacting DOS, N,(w), in first three
surface layers of topological insulator at U =2 (N =12 and T =
0.01). Solid (red) curves: orbital « = 1; dashed (blue) curves: o = 2.
These spectra are derived by extrapolating the lattice Green’s function
from Matsubara frequencies to w + iy with a small imaginary energy
y = 0.05 via the routine ratint. The spectral weight near . = 0 in
panel (a) is due to the metallic edge state, while the DOS in panel (c)
approaches the one characteristic of the bulk band gap.
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induced band narrowing of the edge state gives rise to an
increase of —Bg11(y,8/2). As shown in Fig. 3, this is indeed
the case for layers y > 2. Remarkably, this increase of density
for y > 2 is compensated by a corresponding decrease for
layers y = 1 and 2, so that the layer-integrated weight of the
edge state close to u remains nearly constant.

According to the dispersions shown in Fig. 4, the DOS of
the edge state in the surface layer has the typical shape of
a one-dimensional tight-binding system, with a minimum at
the center and logarithmic van Hove singularities at the band
limits. This is illustrated in Fig. 5(a) for U = 2. Panels (b)
and (c) indicate how this one-dimensional metallic spectral
distribution converts to the one of the topological band
insulator as one moves away from the surface. We also note
that the DOS at w = u in Fig. 5 decays with increasing y
more slowly than —Bg;(y,8/2) in Fig. 3 owing to a small
imaginary energy y = 0.05 introduced in extrapolating the
lattice Green’s function. The peaks at larger energies are
sensitive to details of the extrapolation procedure.

As will be seen in Sec. IIID, the low-energy spectral
distribution of the edge state of the bare surface shown in
Fig. 5 differs qualitatively from the one of the edge state at
the interface between a topological band insulator and a Mott
insulator. The main reason is the appearance of a Kondo peak
in the Mott insulator and a new single-particle feature at p at
the surface of the topological insulator.

C. Interface between topological band insulators

Figure 6(a) shows the partially integrated DOS
—Bg11(y,B/2) at the interface between a weakly correlated
topological band insulator (U, = 2) and more strongly cor-
related ones (Ug = 6...12) as a function of layer index y.
(The embedding region consists of 10 layers on the left and
20 layers on the right of the interface.) These curves vary
monotonously across the interface between two asymptotic
values of —fBg1(y,B/2) which are the same as those in
the interior of the semi-infinite solid shown in Fig. 3. As
mentioned above, the asymptotic values start growing due to
band narrowing only for U > 8. Therefore, the curves for
U = 6 and 8 in Fig. 6(a) are practically constant throughout
the system, while the curves for U = 10 and 12 exhibit
a smooth variation between the two asymptotic values.
Evidently, there is no sign of a topological edge state at the
interface.

Figure 6(b) shows the occupancy n; as a function of layer
index y for the three systems shown in panel (a). As we
consider electron-hole symmetric systems, the occupancies
of the two orbitals are related by n, = 1 — n;. It is seen that
the orbital polarization, i.e., n; — ny, is strongly reduced in the
right-hand system with increasing values of Coulomb energy
U. (At the Mott transition, both orbitals become half-filled,
i.e., ny = ny = 0.5.) Whereas the variation of n; occurs very
rapidly within one or two layers near the interface, the variation
of —Bg11(y,B/2) for Ug > 8 is more gradual and comparable
to the one at the bare surface shown in Fig. 3. This difference
is related to the fact that, because of the finite width of
the weight function F(w), g11(y,8/2) is mainly sensitive to the
density of states of the low-energy bulk bands, in particular, at
larger U, when the band gap shrinks.
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FIG. 6. (Color online) (a) Partially integrated spectral weight,
—Bgn1(y,B/2), and (b) occupancy n, of orbital « = 1 as functions
of layer index near the interface between two correlated topological
band insulators at 7 = 0.01. The systems on the left and right sides
have local Coulomb energies U;, = 2and Ug = 6. .. 12, respectively.
The location of the interface is indicated by the dashed line. The
embedding region consists of 10 layers on the left and 20 layers on
the right side of the interface (N = 30). The asymptotic behavior is
derived from DMFT calculations for the respective bulk materials.

D. Interface between topological band and Mott insulators

We now discuss in more detail the properties of the
edge state between a topological band insulator (Up = 2)
and a Mott insulator whose Coulomb energy is close to the
coexistence region. To obtain the self-consistent solution of
the layer-coupled DMFT equation, we adopt the following
procedure. On the left (right) boundary of the embedded
region, we apply the embedding potential for a semi-infinite
solid in the topological insulator phase with U, =2 (Mott
insulator phase with varying value of Ug), so that the physical
states in the asymptotic regions are fixed. Within the embedded
region, the initial values of the cluster parameters in Eq. (18),
which determine the initial Weiss mean field for each layer, are
taken to be the parameters representing the bulk topological
insulator with Uy (Mott insulator with Ug) to the left (right)
of the interface boundary. Thus, roughly speaking, initially
the system to the left (right) of the boundary surface is in the
topological insulator (Mott insulator) phase. We then proceed
with the standard DMFT iteration procedure, in which the
self-energy and the cluster parameters of the layers in the
embedded region are updated according to the prescription
described in Sec. II. The iteration procedure is repeated
until the local self-energy and Green’s function of each layer
converge and no longer change with further iterations.

Figure 7(a) shows the partially integrated DOS
—Bg11(y,B/2) at u = 0 for several values of Uy as a function
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FIG. 7. (Color online) (a) Edge state at interface between topo-
logical band insulator (left) and Mott insulator (right). Shown is
the partially integrated density of states —pBgii(y,8/2) of orbital
a =1 as a function of layer index at 7 = 0.01. The embedding
region consists of N = 21 layers: 6 layers at U, = 2 and 15 layers
in the range Uy = 13...15. Outside the embedding range, bulk
behavior is assumed. The location of the edge state is seen to be
a sensitive function of the Coulomb energy in the Mott insulator.
The maximum value —pBg;(8/2) ~ 0.33 is associated with the
Kondo peak. (b) Amplitude of the edge state as a function of layer
index at Ug = 12.75 for increasing numbers of iterations in the
self-consistency procedure. The maximum due to the Kondo peak is
seen to shift toward the right-hand side of the embedding region. The
solid vertical line locates the phase boundary between topological and
Mott insulating phases, with both having the same Coulomb repulsion
U = 12.75, at the 160th DMFT iteration.

of layer index y. This quantity exhibits a prominent maximum
near the interface which is associated with the edge state
appearing at the phase boundary between the topological and
Mott insulators. The edge state for Ugr = 15 is seen to be
well localized at the interface. The Mott gap in the right-hand
system at this Coulomb energy is rather large, so that the
edge state decays rapidly into the Mott insulator. In the band
insulating system on the left side, the gap is also large, so that
the shape of the edge state in this region is similar to the one
at the insulator-vacuum interface shown in Fig. 3.

We point out that the amplitude of —8g;;(y,8/2) in the first
layer of the Mott insulator for Ur = 15 is significantly larger
than in the surface layer of the topological band insulator. This
enhancement is related to the fact that, as aresult of a proximity
effect, a Kondo resonance appears in the Mott insulator due
to the screening of the localized spins via the helical edge

205134-7



H. ISHIDA AND A. LIEBSCH

(b)y=15

(c)y=16 (d)y=17

03 @=18 | | Oy=19

FIG. 8. (Color online) (a) Interacting DOS, N,(w), at interface
between topological band insulator (U, = 2) and Mott insulator
(Up =15) with N =21 at T = 0.01 as in Fig. 7. Solid (red) curves:
orbital @ = 1; dashed (blue) curves: orbital @« = 2. Panels (a) and
(b) correspond to two surface layers on the right of the interface
(y = 14,15 in Fig. 7) and panels (c) to (f) to four surface layers on
the left of the interface (y = 16...19). These spectra are obtained
by extrapolating the lattice Green’s function to w + iy with a small
imaginary energy y = 0.05 via the routine ratint. The central spectral
feature in panel (b) corresponds to the Kondo peak induced in the Mott
insulator via the usual proximity effect due to the metallic edge state,
while in panel (c) the low-energy feature is induced in the surface layer
of the topological insulator via a reverse proximity effect caused by
the Kondo peak. Inset of panel (b) shows N, (w) in a smaller w region
corresponding to the Kondo peak obtained with smaller y = 0.01.

states [16]. Thus the interface may be viewed as a Kondo
lattice, where the metallicity is associated with the edge state
induced by the topological band insulator. This is illustrated
in Fig. 8, which shows the variation of the interacting DOS
with layer index for Uy, = 2, Ug = 15. In the first layer of
the Mott insulator [panel (b)], the DOS at low energies has a
three-peak structure, consisting of Kondo peak and van Hove
singularities at the limits of the edge state. The maximum of
—Bg11(y,B/2) =~ 0.33 at y = 15 [see Fig. 7(a)] can therefore
serve as a signature of the Kondo peak. In the second layer,
only a weak remnant of this peak is observed. In contrast,
the first layer of the band insulator is dominated by the van
Hove features of the one-dimensional metallic edge state. The
deeper layers reveal the appearance of the bulk band gap, in
close correspondence to the behavior at the bare surface shown
in Fig. 5.

As can be seen in Fig. 8(c), the DOS near w = p in the
surface layer of the topological insulator is enhanced due to
the presence of the Mott insulator. This is also evident by
comparing —8g11(y,B/2) ~ 0.12 for U = 2 at the free surface
(see Fig. 3) with the corresponding value (*0.18) in the surface
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layer for U, = 2 [Fig. 7(a)]. Thus the Kondo peak in the Mott
insulator gives rise, via the single-particle hopping across the
interface, to a low-energy spectral feature at the surface of the
topological band insulator. Note that this feature is also present
for Uy = 0. It is therefore not induced by the small local
self-energy in the band insulator, but by the large self-energy
in the neighboring layer exhibiting the Kondo peak. This
mechanism may therefore be viewed as a “reverse proximity
effect,” in contrast to the usual one, in which the metal states
induce the Kondo peak in the Mott insulator. This kind of
“feedback” effect occurs also at interfaces between ordinary
metals and Mott insulators (see, for instance, the small peak
for x = 0 in Fig. 1 of Ref. [22]). In the latter case, however,
this effect is very small because of the dominant metallic
DOS. In the present heterostructure, this effect is much more
pronounced because of the minimum of the density of states
of the edge state in the surface layer of the topological band
insulator.

So far we have discussed the formation of the Kondo peak
for Uy =2 and Ui = 15. Returning to Fig. 7(a), we point
out that, when the Coulomb energy Upg in the right-hand
system is lowered, the maximum of the edge state shifts away
from the interface toward the interior of the Mott insulator.
Evidently, due the proximity of the topological band insulator,
the topological band insulating phase is more stable in the
surface region of the Mott insulator, so that the effective
boundary between the topological and Mott phases moves
away from the physical interface. From a numerical point of
view, one observes that the self-energy and cluster parameters
of the boundary layers are converted from those characteristic
of the Mott insulator phase to those characteristic of the
topological insulator phase with increasing iterations, in a
layer-by-layer fashion, starting from the first boundary layer,
toward the interior of the Mott insulator, until no further phase
conversion of layers takes place.

Note that for the lowest two Coulomb energies shown in
Fig. 7(a) (Ug = 13.0 and Ug = 13.2), the Mott insulator is
within the bulk coexistence region (U, & 13.4; see Fig. 2), so
that the actual phase depends sensitively on the properties near
the interface. For Ui = 13.2, the bulk Mott insulator phase is
more stable than the bulk topological insulator phase, so that
the DOS profile shown in Fig. 7(a) does not shift any more
with further iterations. On the other hand, Uy = 13.0 seems
to be very close to Uy, so that one needs hundreds of iterations
to reach the DOS profile in Fig. 7(a). It is to be noted that
to ensure the persistence of the edge state at these Coulomb
energies, the bulk phase in the asymptotic region on the right-
hand side is assumed to be Mott insulating. As discussed in
the previous subsection, if instead both constituents of the
heterostructure are topological band insulators, the edge state
disappears.

To illustrate this delicate balance between topological and
Mott insulating solutions in the interface region, we show in
Fig. 7(b) the edge state for U, = 2 and Ug = 12.75. Beyond
the 15 surface layers of the right-hand system, bulk Mott
insulating behavior is assumed. In addition, these 15 layers
are initially assumed to be in the Mott insulating phase. With
increasing number of iterations, the peak of the edge state is
seen to shift toward the right side of the embedded region.
Apparently, at Ugr = 12.75, the bulk topological insulator
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FIG. 9. (Color online) Edge state at interface between topolog-
ical band insulator and Mott insulator in the coexistence region
with U, = Ug =13 and N =20 at T = 0.01. The Mott gap at this
Coulomb energy is much larger than the topological band gap. Thus
the asymptotic value of —Bg;,(y,8/2) on the right-hand side is much
lower than on the left-hand side, and the decay of the edge state
within the Mott insulator is more rapid. The vertical bar denotes the
Kondo peak in the surface layer of the Mott insulator at the effective
boundary with the topological band insulator.

phase is more stable than the bulk Mott insulator phase, so that
the conversion of layers from the Mott phase to topological
phase does not stop until all layers in the embedded region are
converted. In other words, for this value of Uy, one cannot find
a stable Mott solution of the DMFT equation in contrast to the
cases with larger Uy shown in panel (a). The marked increase
of spectral weight between layers 15 and 16 reflects the fact that
the nominal boundary of the heterostructure now comprises
neighboring topological insulating phases for different values
of U (see Fig. 6). Accordingly, the shape of the “buried”
edge state within the right-hand system approaches that at the
interface between systems with identical Coulomb energies
in the coexistence range, but with topological band insulating
and Mott insulating phases present on either side.

The edge state in such a case is shown in Fig. 9 for
U = Uk = 13, where bulk Mott insulating (bulk topological
band insulating) behavior is enforced on the right (left)
side of the embedding region, respectively. The asymptotic
value of —Bg11(y,B/2) on the right-hand side is very small be-
cause of the large size of the Mott gap. For the same reason, the
decay of the edge state in the Mott insulator is more rapid than
within the band insulator. The spatial distribution of this edge
state is very similar to the one in Fig. 7 deep within the nominal
Mott insulator. As stated above, since Uy = Ur = 13 is very
close to U, at T = 0.01, the bulk topological insulator on the
left-hand side and the bulk Mott insulator on the right-hand
side have nearly the same stability. Therefore, the DOS profile
in Fig. 9 does not move with additional DMFT iterations.

Evidently, the phenomenon observed in Fig. 7 is a proximity
effect, where the band insulating properties on one side of the
interface are induced up to a certain depth on the other side, for
instance, via the penetration of the edge state wave function
across the boundary layer, although asymptotically this side
is a Mott insulator. The boundary between band and Mott
insulating phases then does not coincide with the nominal
interface.

PHYSICAL REVIEW B 90, 205134 (2014)

This proximity effect is particularly large when the
Coulomb energy in the Mott insulating phase, Ug, lies within
the coexistence range of the two phases, i.e., U, < Up < U,,.
Moreover, the penetration of the topological insulating phase
into the interior of the Mott phase as seen in Figs. 7(a) and 7(b)
can occur only when U, < Ug < U,,. In other words, this
phenomenon arises only when the phase transition between
the two insulating phases is of first order. Nevertheless, a
similar proximity effect might occur even when the phase
transition is continuous, at least within one or two layers near
the interface. An example supporting this assertion is the result
for Ug = 13.5in Fig. 7(a). This value of Uy is larger than U,
so that a topological bulk insulating solution does not exist at
T = 0.01. In spite of this, the phase boundary is shifted by
one layer away from the nominal interface in comparison with
the boundary for Ug = 15. Hence the coexistence of two bulk
solutions is not a necessary condition for the proximity effect
to exist.

The results discussed above suggest that the embedding
scheme might be useful for the study of the relative stability of
coexisting phases in DMFT calculations. Let us assume Uy, =
Ur = U lies in the coexistence domain, with band insulating
(Mott insulating) properties enforced on the left (right) side of
the embedded region. As long as U ((T) < U < Up(T), the
topological band insulating solution is more stable, so that the
edge state will be located at the right boundary of the embedded
region. Conversely, if Uy(T) < U < Uy (T), the Mott phase
is more stable, so that the edge state shifts toward the left
boundary.

E. Temperature dependence

So far, we have presented numerical results obtained
at T =1/8 = 0.01. Before closing this section, we briefly
discuss the temperature dependence of the interface electronic
structure. To understand this dependence, it is important to note
that, according to the bulk phase diagram shown in Fig. 2,
the phase boundary between the band and Mott insulating
phases, Uy, shifts to higher Coulomb energies with decreasing
temperature, thereby increasing the stability range of the
topological band insulator. As a result, while the buried edge
state with Ug = 13 shown in Fig. 7(a) is stable at T = 0.01, it
becomes unstable when T is reduced to T = 1/400. Since
U, at this lower temperature is larger than Ug = 13, the
buried edge state for Ur = 13 at T = 1/400 continues to move
toward the right-hand side, in analogy to the behavior shown
in Fig. 7(b) for Ug = 12.75at T = 0.01.

To ensure a stable phase boundary also at lower T,
we consider now the interface between a topological band
insulator with U; = 2 and a Mott insulator with Ur = 15. As
in Fig. 7, the embedding region consists of 21 layers (6 layers
with U = 2; 15 layers with Ug = 15). Figure 10(a) shows
the partially integrated density of states —Bg;i(y,8/2) for
several temperatures. The curve for § = 100 is the same as
that in Fig. 7(a) with Ug = 15. On the topological insulator
side (y > 16), —Bg11(y,B8/2) is seen to depend very little on
temperature for 7 < 0.01. This finding signifies two points.
First, the interacting DOS, N (w), is nearly constant within the
energy scale of the width of the weight function F(w). In fact,
as seen from the spectral distributions shown in Figs. 8(c)-8(f),
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FIG. 10. (Color online) (a) Temperature dependence of partially
integrated density of states —Bg;1(y,8/2) as a function of layer index
for an interface between topological insulator with U, = 2 (y > 16)
and a Mott insulator with Uz = 15 (y < 15). (b) —Img(yv,iw,)/m
of the same interface system as a function of Matsubara frequency
for four lattice layers near the interface (y = 14...17).

Ni(w) is a rather smooth function of w near u = 0. Secondly,
at low T this DOS value at & = 0 does not depend on 7.

On the other hand, Fig. 10(a) demonstrates that, on the Mott
insulator side, —fBg11(y,B/2) varies sensitively as a function
of T. As argued above, the large value of —Bg11(y,8/2)
at the interface layer (y = 15) at T = 0.01 originates from
the Kondo resonance induced by the proximity effect. If
the center of this Kondo resonance were located exactly at
u =0, —Bg11(y,8/2) would not decrease with decreasing
temperature. In reality, as seen from the inset of Fig. 8(b),
because of the nondegeneracy of the two orbitals @ = 1,2, the
peak of Nj(w) is located at w ~ —0.04, so that —8g;,(y,8/2),
which provides a measure of the DOS withinafew T of u = 0,
tends to decrease for T < 0.01. In contrast to layer y = 15, the
interacting DOS of layer y = 14 increases progressively with
decreasing T. Most naturally, this rise in the interacting DOS
may be interpreted as a formation of the Kondo resonance at
y = 14, since the Kondo temperature of this layer should be
smaller than the one for y = 15 because of its weaker coupling
to the metallic edge states.

While the DOS profile of —Bg1:1(y,8/2) in Fig. 10(a)
appears similar on both sides of the interface, the physical
origin of the finite interacting DOS in the vicinity of © =0
on both sides is fundamentally different. In Fig. 8 we have
demonstrated this asymmetry in the electronic structure at the
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interface by plotting the Green’s function at real energies.
Even without this extrapolation, this asymmetry becomes also
evident by analyzing the behavior of —Img;(y,iw,)/m as a
function of Matsubara frequencies, as shown in Fig. 10(b)
at T = 1/400 for four lattice layers on both sides of the
interface. On the Mottinsulator side (y = 14, 15), one observes
a sharp peak structure in —Img;;(y,iw,)/m at w, ~ 0, which
is reminiscent of the formation of the Kondo resonance
at low temperatures. On the other hand, —Img;;(y,iw,)/7
on the topological insulating phase (y = 16, 17) exhibits a
minimum at w, = 0, which is associated with the DOS of the
one-dimensional edge band.

IV. SUMMARY

The edge state at the interface between topological band and
Mott insulators has been investigated within inhomogeneous
DMFT. The generalized Bernevig-Hughes-Zhang two-band
model is used to describe the interplay between interorbital
hybridization and local Coulomb energy. The electronic
properties in the vicinity of the interface are treated self-
consistently by making use of the embedding scheme, where
the effect of the asymptotic semi-infinite bulk materials is
described in terms of complex local potentials. The finite-
temperature exact diagonalization method is employed to
evaluate the on-site many-body interactions.

The main result of this work is the observation that, close
to the critical Coulomb energy of the correlated topological
insulator, the edge state is expelled from the interface toward
the interior of the Mott insulator. Thus, as a result of
the proximity with the topological band insulator, the Mott
insulating phase within a certain depth is converted to a
topological band insulating phase, where the width of the
conversion region depends on the local Coulomb energy within
the Mott insulator. With increasing Coulomb energy, the Mott
gap widens and the topological edge state is pushed again
toward the interface. Its decay within the Mott insulator then
becomes more rapid. At Coulomb energies below the Mott
transition, the edge state ceases to exist since in this case
the interface corresponds to that between two weakly and
moderately correlated topological band insulators.

The origin of the interface-induced conversion from Mott
insulating to band insulating behavior is the coexistence region
associated with the first-order nature of the Mott transition.
Depending on the temperature of the sample, either the Mott
insulating or the band insulating solution is more stable at a
given value of the local Coulomb energy. These results suggest
that the embedding method might be useful to determine the
relative stability of Mott and band insulating phases in DMFT
calculations.

‘We have also shown that the normal proximity effect, where
a Kondo peak in a Mott insulator is induced via neighboring
metallic states, gives rise to a reverse proximity effect, where
the Kondo peak leads to an enhanced density of states at the
surface of the neighboring metal.

There is currently a rapid progress in the search for
new classes of 2D materials exhibiting nontrivial topolog-
ical properties such as silicene [38] and stanene [39,40].
The topological order of these materials can be tuned by
applying an external field or by slightly modifying chemical
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composition. This might allow constructing an interface
between a topological insulator and a normal band insulator,
at which one-dimensional edge states appear. It would be
interesting to study if the proximity effect analogous to that
discussed in the present work occurs also at such interfaces
when the spin-orbit coupling in both insulators is large
enough. Also, while the valence bands of the above-mentioned
materials are predominantly of s and p character, it might
be possible to synthesize strongly correlated 2D topological
insulators if the valence band width can be reduced by some
means. Future experimental research in this direction is desired

PHYSICAL REVIEW B 90, 205134 (2014)

in order for the proximity effect discussed in the present work
to be observed.
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