000020180 001__ 20180
000020180 005__ 20240529111726.0
000020180 0247_ $$2DOI$$a10.1002/adfm.201001933
000020180 0247_ $$2WOS$$aWOS:000289638500003
000020180 0247_ $$2MLZ$$aADFM:ADFM201001933
000020180 037__ $$aPreJuSER-20180
000020180 041__ $$aeng
000020180 082__ $$a620
000020180 084__ $$2WoS$$aChemistry, Multidisciplinary
000020180 084__ $$2WoS$$aChemistry, Physical
000020180 084__ $$2WoS$$aNanoscience & Nanotechnology
000020180 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000020180 084__ $$2WoS$$aPhysics, Applied
000020180 084__ $$2WoS$$aPhysics, Condensed Matter
000020180 1001_ $$0P:(DE-HGF)0$$aChan, W.K.$$b0
000020180 245__ $$aDirect View on Nanoionic Proton Mobility
000020180 260__ $$aWeinheim$$bWiley-VCH$$c2011
000020180 300__ $$a1364 - 1374
000020180 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020180 3367_ $$2DataCite$$aOutput Types/Journal article
000020180 3367_ $$00$$2EndNote$$aJournal Article
000020180 3367_ $$2BibTeX$$aARTICLE
000020180 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020180 3367_ $$2DRIVER$$aarticle
000020180 440_0 $$016181$$aAdvanced Functional Materials$$v21$$x1616-301X$$y8
000020180 500__ $$aFinancial support for ISIS beam time was obtained from the Netherlands Organization for Scientific Research (NWO). NWO is furthermore thanked for financial support of the solid-state NMR facility for advanced materials science at the Radboud University in Nijmegen. This article is the result of joint research in the Delft Research Centre for Sustainable Energy and the 3TU. Centre for Sustainable Energy Technologies. J. van Os, G. Janssen, and H. Janssen are acknowledged for technical support with the NMR measurements. The Institute Laue-Langevin is acknowledged for QENS measurement time on IN5.
000020180 520__ $$aThe field of nanoionics is of great importance for the development of superior materials for devices that rely on the transport of charged ions, like fuel cells, batteries, and sensors. Often nanostructuring leads to enhanced ionic mobilities due to the induced space-charge effects. Here these large space-charge effects occurring in composites of the proton-donating solid acid CsHSO4 and the proton-accepting TiO2 or SiO2 are studied. CsHSO4 is chosen for this study because it can operate effectively as a fuel-cell electrolyte at elevated temperature while its low-temperature conductivity is increased upon nanostructuring. The composites have a negative enthalpy of formation for defects involving the transfer of protons from the acid to the acceptor. Very high defect densities of up to 10% of the available sites are observed by neutron diffraction. The effect on the mobility of the protons is observed directly using quasielastic neutron scattering and nuclear magnetic resonance spectroscopy. Surprisingly large fractions of up to 25% of the hydrogen ions show orders-of-magnitude enhanced mobility in the nanostructured composites of TiO2 or SiO2, both in crystalline CsHSO4 and an amorphous fraction.
000020180 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000020180 536__ $$0G:(DE-Juel1)FUEK415$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000020180 588__ $$aDataset connected to Web of Science
000020180 650_7 $$2WoSType$$aJ
000020180 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000020180 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000020180 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000020180 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eExternal Measurement$$x0
000020180 7001_ $$0P:(DE-HGF)0$$aHaverkate, L.A.$$b1
000020180 7001_ $$0P:(DE-Juel1)VDB90007$$aBorghols, W.J.H.$$b2$$uFZJ
000020180 7001_ $$0P:(DE-HGF)0$$aWagemaker, M.$$b3
000020180 7001_ $$0P:(DE-HGF)0$$aPicken, S.J.$$b4
000020180 7001_ $$0P:(DE-HGF)0$$avan Exk, E.R.H.$$b5
000020180 7001_ $$0P:(DE-HGF)0$$aKentgens, A.P.M.$$b6
000020180 7001_ $$0P:(DE-HGF)0$$aJohnson, M.R.$$b7
000020180 7001_ $$0P:(DE-HGF)0$$aKearley, G.J.Ü$$b8
000020180 7001_ $$0P:(DE-HGF)0$$aMulder, F.M.$$b9
000020180 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201001933$$gVol. 21, p. 1364 - 1374$$p1364 - 1374$$q21<1364 - 1374$$tAdvanced functional materials$$v21$$x1616-301X$$y2011
000020180 8567_ $$uhttp://dx.doi.org/10.1002/adfm.201001933
000020180 909CO $$ooai:juser.fz-juelich.de:20180$$pVDB$$pVDB:MLZ
000020180 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000020180 9141_ $$y2011
000020180 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000020180 9131_ $$0G:(DE-Juel1)FUEK415$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000020180 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000020180 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$gPGI$$kPGI-4$$lStreumethoden$$x0
000020180 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x1
000020180 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$gJCNS$$kJCNS-2$$lStreumethoden$$x2
000020180 970__ $$aVDB:(DE-Juel1)135299
000020180 980__ $$aVDB
000020180 980__ $$aConvertedRecord
000020180 980__ $$ajournal
000020180 980__ $$aI:(DE-Juel1)PGI-4-20110106
000020180 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000020180 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000020180 980__ $$aUNRESTRICTED
000020180 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000020180 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000020180 981__ $$aI:(DE-Juel1)JCNS-2-20110106