001     20180
005     20240529111726.0
024 7 _ |2 DOI
|a 10.1002/adfm.201001933
024 7 _ |2 WOS
|a WOS:000289638500003
024 7 _ |2 MLZ
|a ADFM:ADFM201001933
037 _ _ |a PreJuSER-20180
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Chemistry, Multidisciplinary
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Chan, W.K.
|b 0
245 _ _ |a Direct View on Nanoionic Proton Mobility
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2011
300 _ _ |a 1364 - 1374
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 16181
|a Advanced Functional Materials
|v 21
|x 1616-301X
|y 8
500 _ _ |a Financial support for ISIS beam time was obtained from the Netherlands Organization for Scientific Research (NWO). NWO is furthermore thanked for financial support of the solid-state NMR facility for advanced materials science at the Radboud University in Nijmegen. This article is the result of joint research in the Delft Research Centre for Sustainable Energy and the 3TU. Centre for Sustainable Energy Technologies. J. van Os, G. Janssen, and H. Janssen are acknowledged for technical support with the NMR measurements. The Institute Laue-Langevin is acknowledged for QENS measurement time on IN5.
520 _ _ |a The field of nanoionics is of great importance for the development of superior materials for devices that rely on the transport of charged ions, like fuel cells, batteries, and sensors. Often nanostructuring leads to enhanced ionic mobilities due to the induced space-charge effects. Here these large space-charge effects occurring in composites of the proton-donating solid acid CsHSO4 and the proton-accepting TiO2 or SiO2 are studied. CsHSO4 is chosen for this study because it can operate effectively as a fuel-cell electrolyte at elevated temperature while its low-temperature conductivity is increased upon nanostructuring. The composites have a negative enthalpy of formation for defects involving the transfer of protons from the acid to the acceptor. Very high defect densities of up to 10% of the available sites are observed by neutron diffraction. The effect on the mobility of the protons is observed directly using quasielastic neutron scattering and nuclear magnetic resonance spectroscopy. Surprisingly large fractions of up to 25% of the hydrogen ions show orders-of-magnitude enhanced mobility in the nanostructured composites of TiO2 or SiO2, both in crystalline CsHSO4 and an amorphous fraction.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK415
|a Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|c P55
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 1
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e External Measurement
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Haverkate, L.A.
|b 1
700 1 _ |0 P:(DE-Juel1)VDB90007
|a Borghols, W.J.H.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Wagemaker, M.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Picken, S.J.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a van Exk, E.R.H.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Kentgens, A.P.M.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Johnson, M.R.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Kearley, G.J.Ü
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Mulder, F.M.
|b 9
773 _ _ |0 PERI:(DE-600)2039420-2
|a 10.1002/adfm.201001933
|g Vol. 21, p. 1364 - 1374
|p 1364 - 1374
|q 21<1364 - 1374
|t Advanced functional materials
|v 21
|x 1616-301X
|y 2011
856 7 _ |u http://dx.doi.org/10.1002/adfm.201001933
909 C O |o oai:juser.fz-juelich.de:20180
|p VDB:MLZ
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK415
|b Struktur der Materie
|k P55
|l Großgeräteforschung mit Photonen, Neutronen und Ionen
|v Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|x 1
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|a DE-HGF
|b Forschungsbereich Materie
|l In-house research on the structure, dynamics and function of matter
|v Neutrons for Research on Condensed Matter
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|g PGI
|k PGI-4
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|g JCNS
|k JCNS-2
|l Streumethoden
|x 2
970 _ _ |a VDB:(DE-Juel1)135299
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21