000201812 001__ 201812
000201812 005__ 20210129215922.0
000201812 0247_ $$2doi$$a10.1140/epje/i2012-12005-2
000201812 0247_ $$2ISSN$$a1292-8941
000201812 0247_ $$2ISSN$$a1292-895X
000201812 0247_ $$2WOS$$aWOS:000300556600005
000201812 037__ $$aFZJ-2015-04106
000201812 082__ $$a530
000201812 1001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b0$$eCorresponding Author$$ufzj
000201812 245__ $$aElastic contact mechanics: Percolation of the contact area and fluid squeeze-out
000201812 260__ $$aBerlin$$bSpringer$$c2012
000201812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435568096_10718
000201812 3367_ $$2DataCite$$aOutput Types/Journal article
000201812 3367_ $$00$$2EndNote$$aJournal Article
000201812 3367_ $$2BibTeX$$aARTICLE
000201812 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201812 3367_ $$2DRIVER$$aarticle
000201812 520__ $$aThe dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.
000201812 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000201812 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201812 7001_ $$0P:(DE-HGF)0$$aProdanov, N.$$b1
000201812 7001_ $$0P:(DE-HGF)0$$aKrick, B. A.$$b2
000201812 7001_ $$0P:(DE-HGF)0$$aRodriguez, N.$$b3
000201812 7001_ $$0P:(DE-HGF)0$$aMulakaluri, N.$$b4
000201812 7001_ $$0P:(DE-HGF)0$$aSawyer, W. G.$$b5
000201812 7001_ $$0P:(DE-HGF)0$$aMangiagalli, P.$$b6
000201812 773__ $$0PERI:(DE-600)2004003-9$$a10.1140/epje/i2012-12005-2$$gVol. 35, no. 1, p. 5$$n1$$p5$$tThe @European physical journal / E$$v35$$x1292-895X$$y2012
000201812 8564_ $$uhttps://juser.fz-juelich.de/record/201812/files/art_10.1140_epje_i2012-12005-2.pdf$$yRestricted
000201812 8564_ $$uhttps://juser.fz-juelich.de/record/201812/files/art_10.1140_epje_i2012-12005-2.gif?subformat=icon$$xicon$$yRestricted
000201812 8564_ $$uhttps://juser.fz-juelich.de/record/201812/files/art_10.1140_epje_i2012-12005-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201812 8564_ $$uhttps://juser.fz-juelich.de/record/201812/files/art_10.1140_epje_i2012-12005-2.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201812 8564_ $$uhttps://juser.fz-juelich.de/record/201812/files/art_10.1140_epje_i2012-12005-2.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201812 8564_ $$uhttps://juser.fz-juelich.de/record/201812/files/art_10.1140_epje_i2012-12005-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201812 909CO $$ooai:juser.fz-juelich.de:201812$$pVDB
000201812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201812 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201812 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000201812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201812 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201812 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201812 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201812 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201812 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000201812 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000201812 980__ $$ajournal
000201812 980__ $$aVDB
000201812 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201812 980__ $$aI:(DE-Juel1)PGI-1-20110106
000201812 980__ $$aUNRESTRICTED
000201812 981__ $$aI:(DE-Juel1)PGI-1-20110106