000201822 001__ 201822
000201822 005__ 20210129215925.0
000201822 0247_ $$2doi$$a10.1007/s11249-012-0053-2
000201822 0247_ $$2ISSN$$a1023-8883
000201822 0247_ $$2ISSN$$a1573-2711
000201822 0247_ $$2WOS$$aWOS:000316364100003
000201822 037__ $$aFZJ-2015-04116
000201822 082__ $$a670
000201822 1001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b0$$eCorresponding Author$$ufzj
000201822 245__ $$aContact Mechanics and Friction on Dry and Wet Human Skin
000201822 260__ $$aBasel$$bBaltzer$$c2013
000201822 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435569128_10714
000201822 3367_ $$2DataCite$$aOutput Types/Journal article
000201822 3367_ $$00$$2EndNote$$aJournal Article
000201822 3367_ $$2BibTeX$$aARTICLE
000201822 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201822 3367_ $$2DRIVER$$aarticle
000201822 520__ $$aThe surface topography of the human wrist skin is studied using an optical method and the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for both dry and wet condition of the skin. For dry skin, plastic yielding becomes important and will determine the area of contact observed at the highest magnification. The measured friction coefficient [M.J. Adams et al., Tribol Lett 26:239, 2007] on both dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 15 MPa acts in the area of real contact during sliding. This frictional shear stress is typical for sliding on polymer surfaces, and for thin (nanometer) confined fluid films. The big increase in the friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as resulting from the increase in the contact area arising from the attraction of capillary bridges. This effect is predicted to operate as long as the water layer is thinner than ∼14 μm, which is in good agreement with the time period (of order 100 s) over which the enhanced friction is observed (it takes about 100 s for ∼14 μm water to evaporate at 50% relative humidity and at room temperature). We calculate the dependency of the sliding friction coefficient on the sliding speed on lubricated surfaces (Stribeck curve). We show that sliding of a sphere and of a cylinder gives very similar results if the radius and load on the sphere and cylinder are appropriately related. When applied to skin the calculated Stribeck curve is in good agreement with experiment, except that the curve is shifted by one velocity-decade to higher velocities than observed experimentally. We explain this by the role of the skin and underlying tissues viscoelasticity on the contact mechanics
000201822 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000201822 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201822 7001_ $$0P:(DE-HGF)0$$aKovalev, A.$$b1
000201822 7001_ $$0P:(DE-HGF)0$$aGorb, S. N.$$b2
000201822 773__ $$0PERI:(DE-600)2015908-0$$a10.1007/s11249-012-0053-2$$gVol. 50, no. 1, p. 17 - 30$$n1$$p17 - 30$$tTribology letters$$v50$$x1573-2711$$y2013
000201822 8564_ $$uhttps://juser.fz-juelich.de/record/201822/files/art_10.1007_s11249-012-0053-2.pdf$$yRestricted
000201822 8564_ $$uhttps://juser.fz-juelich.de/record/201822/files/art_10.1007_s11249-012-0053-2.gif?subformat=icon$$xicon$$yRestricted
000201822 8564_ $$uhttps://juser.fz-juelich.de/record/201822/files/art_10.1007_s11249-012-0053-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201822 8564_ $$uhttps://juser.fz-juelich.de/record/201822/files/art_10.1007_s11249-012-0053-2.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201822 8564_ $$uhttps://juser.fz-juelich.de/record/201822/files/art_10.1007_s11249-012-0053-2.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201822 8564_ $$uhttps://juser.fz-juelich.de/record/201822/files/art_10.1007_s11249-012-0053-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201822 909CO $$ooai:juser.fz-juelich.de:201822$$pVDB
000201822 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201822 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201822 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000201822 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201822 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201822 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201822 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201822 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201822 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201822 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201822 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000201822 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201822 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000201822 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000201822 980__ $$ajournal
000201822 980__ $$aVDB
000201822 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201822 980__ $$aI:(DE-Juel1)PGI-1-20110106
000201822 980__ $$aUNRESTRICTED
000201822 981__ $$aI:(DE-Juel1)PGI-1-20110106