000201825 001__ 201825
000201825 005__ 20210129215925.0
000201825 0247_ $$2doi$$a10.3762/bjnano.5.147
000201825 0247_ $$2Handle$$a2128/8823
000201825 0247_ $$2WOS$$aWOS:000344098700001
000201825 037__ $$aFZJ-2015-04119
000201825 082__ $$a620
000201825 1001_ $$0P:(DE-HGF)0$$aKovalev, Alexander E$$b0$$eCorresponding Author
000201825 245__ $$aSurface topography and contact mechanics of dry and wet human skin
000201825 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2014
000201825 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1434102899_26807
000201825 3367_ $$2DataCite$$aOutput Types/Journal article
000201825 3367_ $$00$$2EndNote$$aJournal Article
000201825 3367_ $$2BibTeX$$aARTICLE
000201825 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201825 3367_ $$2DRIVER$$aarticle
000201825 520__ $$aThe surface topography of the human wrist skin is studied by using optical and atomic force microscopy (AFM) methods. By using these techniques the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for the dry and wet skin. The measured friction coefficient between a glass ball and dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 13 MPa and σf ≈ 5 MPa, respectively, act in the area of real contact during sliding. These frictional shear stresses are typical for sliding on surfaces of elastic bodies. The big increase in friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as result of the increase in the contact area arising from the attraction of capillary bridges. Finally, we demonstrated that the real contact area can be properly defined only when a combination of both AFM and optical methods is used for power spectrum calculation.
000201825 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000201825 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201825 7001_ $$0P:(DE-HGF)0$$aDening, Kirstin$$b1
000201825 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b2$$ufzj
000201825 7001_ $$0P:(DE-HGF)0$$aGorb, Stanislav N$$b3
000201825 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.5.147$$gVol. 5, p. 1341 - 1348$$p1341 - 1348$$tBeilstein journal of nanotechnology$$v5$$x2190-4286$$y2014
000201825 8564_ $$uhttps://juser.fz-juelich.de/record/201825/files/2190-4286-5-147.pdf$$yOpenAccess
000201825 8564_ $$uhttps://juser.fz-juelich.de/record/201825/files/2190-4286-5-147.gif?subformat=icon$$xicon$$yOpenAccess
000201825 8564_ $$uhttps://juser.fz-juelich.de/record/201825/files/2190-4286-5-147.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201825 8564_ $$uhttps://juser.fz-juelich.de/record/201825/files/2190-4286-5-147.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201825 8564_ $$uhttps://juser.fz-juelich.de/record/201825/files/2190-4286-5-147.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201825 8564_ $$uhttps://juser.fz-juelich.de/record/201825/files/2190-4286-5-147.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201825 909CO $$ooai:juser.fz-juelich.de:201825$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000201825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201825 9132_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201825 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000201825 9141_ $$y2015
000201825 915__ $$0LIC:(DE-HGF)CCBY2$$2HGFVOC$$aCreative Commons Attribution CC BY 2.0
000201825 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201825 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201825 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201825 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201825 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201825 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000201825 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201825 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201825 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201825 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000201825 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000201825 980__ $$ajournal
000201825 980__ $$aVDB
000201825 980__ $$aFullTexts
000201825 980__ $$aUNRESTRICTED
000201825 980__ $$aI:(DE-Juel1)IAS-1-20090406
000201825 980__ $$aI:(DE-Juel1)PGI-1-20110106
000201825 9801_ $$aFullTexts
000201825 981__ $$aI:(DE-Juel1)PGI-1-20110106