000201845 001__ 201845
000201845 005__ 20220930130043.0
000201845 0247_ $$2doi$$a10.1063/1.4919697
000201845 0247_ $$2Handle$$a2128/8905
000201845 0247_ $$2WOS$$aWOS:000353827700083
000201845 037__ $$aFZJ-2015-04139
000201845 082__ $$a530
000201845 1001_ $$0P:(DE-Juel1)157925$$aRaab, N.$$b0$$eCorresponding Author
000201845 245__ $$aImpact of the cation-stoichiometry on the resistive switching and data retention of SrTiO$_{3}$ thin films
000201845 260__ $$aNew York, NY$$bAmerican Inst. of Physics$$c2015
000201845 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435571742_10714
000201845 3367_ $$2DataCite$$aOutput Types/Journal article
000201845 3367_ $$00$$2EndNote$$aJournal Article
000201845 3367_ $$2BibTeX$$aARTICLE
000201845 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201845 3367_ $$2DRIVER$$aarticle
000201845 520__ $$a Resistive switching oxides are investigated at great length as promising candidates for the next generation of non-volatile memories. It is generally assumed that defects have a strong impact on the resistive switching properties of transition metal oxides. However, the correlation between different types of defect structures and the switching properties is still elusive. We deposited single-crystalline SrTiO3 thin films with various cation stoichiometry by pulsed laser deposition to investigate the stoichiometry related and therefore defect dependent influence on the resistive switching properties. This letter will reveal the differences in initial states, forming steps, switching characteristics as well as retention times taking into account both point defects and extended defects. We then propose an explanation on the basis of oxygen vacancy generation and redistribution to elucidate the dependence of the resistive switching properties on the cation stoichiometry dependent defect structure. 
000201845 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000201845 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201845 7001_ $$00000-0003-0008-514X$$aBäumer, C.$$b1
000201845 7001_ $$0P:(DE-Juel1)130620$$aDittmann, R.$$b2
000201845 773__ $$0PERI:(DE-600)2583909-3$$a10.1063/1.4919697$$gVol. 5, no. 4, p. 047150 -$$n4$$p047150 -$$tAIP Advances$$v5$$x2158-3226$$y2015
000201845 8564_ $$uhttps://juser.fz-juelich.de/record/201845/files/1.4919697.pdf$$yOpenAccess
000201845 8564_ $$uhttps://juser.fz-juelich.de/record/201845/files/1.4919697.gif?subformat=icon$$xicon$$yOpenAccess
000201845 8564_ $$uhttps://juser.fz-juelich.de/record/201845/files/1.4919697.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000201845 8564_ $$uhttps://juser.fz-juelich.de/record/201845/files/1.4919697.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000201845 8564_ $$uhttps://juser.fz-juelich.de/record/201845/files/1.4919697.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000201845 8564_ $$uhttps://juser.fz-juelich.de/record/201845/files/1.4919697.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000201845 8767_ $$92015-04-23$$d2015-04-30$$eAPC$$jZahlung erfolgt$$zCCBY Open Access Article
000201845 909CO $$ooai:juser.fz-juelich.de:201845$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000201845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157925$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201845 9101_ $$0I:(DE-588b)5008462-8$$60000-0003-0008-514X$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201845 9130_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000201845 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201845 9141_ $$y2015
000201845 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000201845 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201845 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201845 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000201845 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201845 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000201845 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201845 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201845 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201845 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201845 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000201845 9801_ $$aFullTexts
000201845 980__ $$ajournal
000201845 980__ $$aVDB
000201845 980__ $$aFullTexts
000201845 980__ $$aUNRESTRICTED
000201845 980__ $$aI:(DE-Juel1)PGI-7-20110106
000201845 980__ $$aAPC