000020185 001__ 20185
000020185 005__ 20240529111726.0
000020185 0247_ $$2pmid$$apmid:21598941
000020185 0247_ $$2DOI$$a10.1021/ja2026213
000020185 0247_ $$2WOS$$aWOS:000292715600050
000020185 0247_ $$2MLZ$$adoi:10.1021/ja2026213
000020185 037__ $$aPreJuSER-20185
000020185 041__ $$aeng
000020185 082__ $$a540
000020185 084__ $$2WoS$$aChemistry, Multidisciplinary
000020185 1001_ $$0P:(DE-HGF)0$$aWagemaker, M.$$b0
000020185 245__ $$aDynamic Solubility Limits in Nanosized Olivine LiFePO(4)
000020185 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2011
000020185 300__ $$a10222 - 10228
000020185 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020185 3367_ $$2DataCite$$aOutput Types/Journal article
000020185 3367_ $$00$$2EndNote$$aJournal Article
000020185 3367_ $$2BibTeX$$aARTICLE
000020185 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020185 3367_ $$2DRIVER$$aarticle
000020185 440_0 $$021462$$aJournal of the American Chemical Society$$v133$$x0002-7863$$y26
000020185 500__ $$aThis work is a contribution from the Delft Energy Initiative (DEI). Financial support from Shell is acknowledged for the Sustainable Mobility grant funding D.P.S. The Netherlands Organization for Scientific Research (NWO) is acknowledged for both beam time at ISIS and the CW-VIDI grant of M.W. The authors thank Ron Smith for assistance with the neutron diffraction experiments at POLARIS (ISIS), Michela Brunelli and Mark Johnson at D20 (ILL), and Vladimir Pomjakushin at HRPT (PSI). We thank the Alistore network for providing access to the TEM measurements.
000020185 520__ $$aBecause of its stability, nanosized olivine LiFePO(4) opens the door toward high-power Li-ion battery technology for large-scale applications as required for plug-in hybrid vehicles. Here, we reveal that the thermodynamics of first-order phase transitions in nanoinsertion materials is distinctly different from bulk materials as demonstrated by the decreasing miscibility gap that appears to be strongly dependent on the overall composition in LiFePO(4). In contrast to our common thermodynamic knowledge, that dictates solubility limits to be independent of the overall composition, combined neutron and X-ray diffraction reveals strongly varying solubility limits below particle sizes of 35 nm. A rationale is found based on modeling of the diffuse interface. Size confinement of the lithium concentration gradient, which exists at the phase boundary, competes with the in bulk energetically favorable compositions. Consequently, temperature and size diagrams of nanomaterials require complete reconsideration, being strongly dependent on the overall composition. This is vital knowledge for the future nanoarchitecturing of superior energy storage devices as the performance will heavily depend on the disclosed nanoionic properties.
000020185 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000020185 536__ $$0G:(DE-Juel1)FUEK415$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000020185 588__ $$aDataset connected to Web of Science, Pubmed
000020185 650_7 $$2WoSType$$aJ
000020185 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000020185 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000020185 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eExternal Measurement$$x0
000020185 7001_ $$0P:(DE-HGF)0$$aSingh, D.P.$$b1
000020185 7001_ $$0P:(DE-Juel1)VDB90007$$aBorghols, W.J.H.$$b2$$uFZJ
000020185 7001_ $$0P:(DE-HGF)0$$aLafont, U.$$b3
000020185 7001_ $$0P:(DE-HGF)0$$aHaverkate, L.$$b4
000020185 7001_ $$0P:(DE-HGF)0$$aPeterson, V.K.$$b5
000020185 7001_ $$0P:(DE-HGF)0$$aMulder, F.M.$$b6
000020185 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/ja2026213$$gVol. 133, p. 10222 - 10228$$p10222 - 10228$$q133<10222 - 10228$$tJournal of the American Chemical Society$$v133$$x0002-7863$$y2011
000020185 8567_ $$uhttp://dx.doi.org/10.1021/ja2026213
000020185 909CO $$ooai:juser.fz-juelich.de:20185$$pVDB$$pVDB:MLZ
000020185 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000020185 9141_ $$y2011
000020185 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000020185 9131_ $$0G:(DE-Juel1)FUEK415$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000020185 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000020185 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$gPGI$$kPGI-4$$lStreumethoden$$x0
000020185 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x1
000020185 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$gJCNS$$kJCNS-2$$lStreumethoden$$x2
000020185 970__ $$aVDB:(DE-Juel1)135303
000020185 980__ $$aVDB
000020185 980__ $$aConvertedRecord
000020185 980__ $$ajournal
000020185 980__ $$aI:(DE-Juel1)PGI-4-20110106
000020185 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000020185 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000020185 980__ $$aUNRESTRICTED
000020185 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000020185 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000020185 981__ $$aI:(DE-Juel1)JCNS-2-20110106