000201866 001__ 201866
000201866 005__ 20210129215934.0
000201866 0247_ $$2doi$$a10.1016/j.neuropharm.2011.02.007
000201866 0247_ $$2ISSN$$a0028-3908
000201866 0247_ $$2ISSN$$a1873-7064
000201866 0247_ $$2WOS$$aWOS:000300533800034
000201866 0247_ $$2altmetric$$aaltmetric:1890516
000201866 0247_ $$2pmid$$apmid:21349276
000201866 037__ $$aFZJ-2015-04160
000201866 082__ $$a610
000201866 1001_ $$0P:(DE-HGF)0$$aGandal, Michael J.$$b0
000201866 245__ $$aGamma synchrony: Towards a translational biomarker for the treatment-resistant symptoms of schizophrenia
000201866 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2012
000201866 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000201866 3367_ $$0PUB:(DE-HGF)36$$2PUB:(DE-HGF)$$aReview$$breview$$mreview$$s1435643266_2391
000201866 3367_ $$2DRIVER$$areview
000201866 3367_ $$00$$2EndNote$$aJournal Article
000201866 3367_ $$2ORCID$$aBOOK_REVIEW
000201866 3367_ $$2DataCite$$aOutput Types/Book Review
000201866 3367_ $$2BibTeX$$aARTICLE
000201866 520__ $$aThe lack of efficacy for antipsychotics with respect to negative symptoms and cognitive deficits is a significant obstacle for the treatment of schizophrenia. Developing new drugs to target these symptoms requires appropriate neural biomarkers that can be investigated in model organisms, be used to track treatment response, and provide insight into pathophysiological disease mechanisms. A growing body of evidence indicates that neural oscillations in the gamma frequency range (30–80 Hz) are disturbed in schizophrenia. Gamma synchrony has been shown to mediate a host of sensory and cognitive functions, including perceptual encoding, selective attention, salience, and working memory – neurocognitive processes that are dysfunctional in schizophrenia and largely refractory to treatment. This review summarizes the current state of clinical literature with respect to gamma-band responses (GBRs) in schizophrenia, focusing on resting and auditory paradigms. Next, preclinical studies of schizophrenia that have investigated gamma-band activity are reviewed to gain insight into neural mechanisms associated with these deficits. We conclude that abnormalities in gamma synchrony are ubiquitous in schizophrenia and likely reflect an elevation in baseline cortical gamma synchrony (‘noise’) coupled with reduced stimulus-evoked GBRs (‘signal’). Such a model likely reflects hippocampal and cortical dysfunction, as well as reduced glutamatergic signaling with downstream GABAergic deficits, but is probably less influenced by dopaminergic abnormalities implicated in schizophrenia. Finally, we propose that analogous signal-to-noise deficits in the flow of cortical information in preclinical models are useful targets for the development of new drugs that target the treatment-resistant symptoms of schizophrenia.
000201866 536__ $$0G:(DE-HGF)POF2-331$$a331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)$$cPOF2-331$$fPOF II$$x0
000201866 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201866 7001_ $$0P:(DE-HGF)0$$aEdgar, J. Christopher$$b1
000201866 7001_ $$0P:(DE-Juel1)131689$$aKlook, Kerstin$$b2$$eCorresponding Author
000201866 7001_ $$0P:(DE-HGF)0$$aSiegel, Steven J.$$b3
000201866 773__ $$0PERI:(DE-600)1500655-4$$a10.1016/j.neuropharm.2011.02.007$$gVol. 62, no. 3, p. 1504 - 1518$$n3$$p1504 - 1518$$tNeuropharmacology$$v62$$x0028-3908$$y2012
000201866 8564_ $$uhttps://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.pdf$$yRestricted
000201866 8564_ $$uhttps://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.gif?subformat=icon$$xicon$$yRestricted
000201866 8564_ $$uhttps://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201866 8564_ $$uhttps://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201866 8564_ $$uhttps://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201866 8564_ $$uhttps://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201866 909CO $$ooai:juser.fz-juelich.de:201866$$pVDB
000201866 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000201866 9131_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0
000201866 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201866 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201866 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201866 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201866 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201866 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201866 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201866 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201866 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201866 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201866 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201866 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000201866 980__ $$areview
000201866 980__ $$aVDB
000201866 980__ $$ajournal
000201866 980__ $$aI:(DE-Juel1)INM-2-20090406
000201866 980__ $$aUNRESTRICTED