001     201866
005     20210129215934.0
024 7 _ |a 10.1016/j.neuropharm.2011.02.007
|2 doi
024 7 _ |a 0028-3908
|2 ISSN
024 7 _ |a 1873-7064
|2 ISSN
024 7 _ |a WOS:000300533800034
|2 WOS
024 7 _ |a altmetric:1890516
|2 altmetric
024 7 _ |a pmid:21349276
|2 pmid
037 _ _ |a FZJ-2015-04160
082 _ _ |a 610
100 1 _ |a Gandal, Michael J.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Gamma synchrony: Towards a translational biomarker for the treatment-resistant symptoms of schizophrenia
260 _ _ |a Amsterdam [u.a.]
|c 2012
|b Elsevier Science
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a Review
|b review
|m review
|0 PUB:(DE-HGF)36
|s 1435643266_2391
|2 PUB:(DE-HGF)
336 7 _ |a review
|2 DRIVER
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a BOOK_REVIEW
|2 ORCID
336 7 _ |a Output Types/Book Review
|2 DataCite
336 7 _ |a ARTICLE
|2 BibTeX
520 _ _ |a The lack of efficacy for antipsychotics with respect to negative symptoms and cognitive deficits is a significant obstacle for the treatment of schizophrenia. Developing new drugs to target these symptoms requires appropriate neural biomarkers that can be investigated in model organisms, be used to track treatment response, and provide insight into pathophysiological disease mechanisms. A growing body of evidence indicates that neural oscillations in the gamma frequency range (30–80 Hz) are disturbed in schizophrenia. Gamma synchrony has been shown to mediate a host of sensory and cognitive functions, including perceptual encoding, selective attention, salience, and working memory – neurocognitive processes that are dysfunctional in schizophrenia and largely refractory to treatment. This review summarizes the current state of clinical literature with respect to gamma-band responses (GBRs) in schizophrenia, focusing on resting and auditory paradigms. Next, preclinical studies of schizophrenia that have investigated gamma-band activity are reviewed to gain insight into neural mechanisms associated with these deficits. We conclude that abnormalities in gamma synchrony are ubiquitous in schizophrenia and likely reflect an elevation in baseline cortical gamma synchrony (‘noise’) coupled with reduced stimulus-evoked GBRs (‘signal’). Such a model likely reflects hippocampal and cortical dysfunction, as well as reduced glutamatergic signaling with downstream GABAergic deficits, but is probably less influenced by dopaminergic abnormalities implicated in schizophrenia. Finally, we propose that analogous signal-to-noise deficits in the flow of cortical information in preclinical models are useful targets for the development of new drugs that target the treatment-resistant symptoms of schizophrenia.
536 _ _ |a 331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)
|0 G:(DE-HGF)POF2-331
|c POF2-331
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Edgar, J. Christopher
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Klook, Kerstin
|0 P:(DE-Juel1)131689
|b 2
|e Corresponding Author
700 1 _ |a Siegel, Steven J.
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1016/j.neuropharm.2011.02.007
|g Vol. 62, no. 3, p. 1504 - 1518
|0 PERI:(DE-600)1500655-4
|n 3
|p 1504 - 1518
|t Neuropharmacology
|v 62
|y 2012
|x 0028-3908
856 4 _ |u https://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201866/files/1-s2.0-S0028390811000773-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201866
|p VDB
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-331
|2 G:(DE-HGF)POF2-300
|v Signalling Pathways and Mechanisms in the Nervous System
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a review
980 _ _ |a VDB
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21