000201868 001__ 201868
000201868 005__ 20210129215934.0
000201868 0247_ $$2doi$$a10.1002/sia.5541
000201868 0247_ $$2ISSN$$a0142-2421
000201868 0247_ $$2ISSN$$a1096-9918
000201868 0247_ $$2WOS$$aWOS:000345574200036
000201868 037__ $$aFZJ-2015-04162
000201868 082__ $$a540
000201868 1001_ $$0P:(DE-HGF)0$$aMathieu, Claire$$b0$$eCorresponding Author
000201868 245__ $$aExploring interlayer Dirac cone coupling in commensurately rotated few-layer graphene on SiC(000-1)
000201868 260__ $$aChichester [u.a.]$$bWiley$$c2014
000201868 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435643387_1776
000201868 3367_ $$2DataCite$$aOutput Types/Journal article
000201868 3367_ $$00$$2EndNote$$aJournal Article
000201868 3367_ $$2BibTeX$$aARTICLE
000201868 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201868 3367_ $$2DRIVER$$aarticle
000201868 520__ $$aWe investigate electronic band-structure images in reciprocal space of few-layer graphene epitaxially grown on SiC(000-1). In addition to the observation of commensurate rotation angles of the graphene layers, the k-space images recorded near the Fermi edge highlight structures originating from diffraction of the Dirac cones due to the relative rotation of adjacent layers. The 21.9° and 27° rotation angles between two sheets of graphene are responsible for a periodic pattern that can be described with a superlattice unit cells. The superlattice generates replicas of Dirac cones with smaller wave vectors, because of a Brillouin zone folding
000201868 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201868 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201868 7001_ $$0P:(DE-HGF)0$$aConrad, Edward H.$$b1
000201868 7001_ $$0P:(DE-HGF)0$$aWang, Feng$$b2
000201868 7001_ $$0P:(DE-HGF)0$$aRault, Julien E.$$b3
000201868 7001_ $$0P:(DE-Juel1)145012$$aFeyer, Vitaliy$$b4
000201868 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b5
000201868 7001_ $$0P:(DE-HGF)0$$aRenault, Olivier$$b6
000201868 7001_ $$0P:(DE-HGF)0$$aBarrett, Nick$$b7
000201868 773__ $$0PERI:(DE-600)2023881-2$$a10.1002/sia.5541$$gVol. 46, no. 12-13, p. 1268 - 1272$$n12-13$$p1268 - 1272$$tSurface and interface analysis$$v46$$x0142-2421$$y2014
000201868 909CO $$ooai:juser.fz-juelich.de:201868$$pVDB
000201868 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145012$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201868 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201868 9132_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000201868 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201868 9141_ $$y2015
000201868 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201868 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201868 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201868 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201868 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201868 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201868 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201868 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201868 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201868 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000201868 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000201868 980__ $$ajournal
000201868 980__ $$aVDB
000201868 980__ $$aI:(DE-Juel1)PGI-6-20110106
000201868 980__ $$aI:(DE-82)080009_20140620
000201868 980__ $$aUNRESTRICTED