000201872 001__ 201872
000201872 005__ 20210129215935.0
000201872 0247_ $$2doi$$a10.1016/j.jmmm.2014.06.047
000201872 0247_ $$2ISSN$$a0304-8853
000201872 0247_ $$2ISSN$$a1873-4766
000201872 0247_ $$2WOS$$aWOS:000340050500031
000201872 037__ $$aFZJ-2015-04166
000201872 082__ $$a530
000201872 1001_ $$0P:(DE-Juel1)130709$$aHertel, Riccardo$$b0$$eCorresponding Author
000201872 245__ $$aHybrid finite-element/boundary-element method to calculate Oersted fields
000201872 260__ $$aAmsterdam$$bNorth-Holland Publ. Co.$$c2014
000201872 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435644023_1776
000201872 3367_ $$2DataCite$$aOutput Types/Journal article
000201872 3367_ $$00$$2EndNote$$aJournal Article
000201872 3367_ $$2BibTeX$$aARTICLE
000201872 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201872 3367_ $$2DRIVER$$aarticle
000201872 520__ $$aThe article presents a general-purpose hybrid finite-element/boundary-element method (FEM/BEM) to calculate magnetostatic fields generated by stationary electric currents. The efficiency of this code lies in its ability to simulate Oersted fields in complex geometries with non-uniform current density distributions. As a precursor to the calculation of the Oersted field, an FEM algorithm is employed to calculate the electric current density distribution. The accuracy of the code is confirmed by comparison with analytic results. Two examples show how this method provides important numerical data that can be directly plugged into micromagnetic simulations: The current density distribution in a thin magnetic strip with a notch, and the Oersted field in a three-dimensional contact geometry; similar to the type commonly used in spin-torque driven nano-oscillators. It is argued that a precise calculation of both, the Oersted field and the current density distribution, is essential for a reliable simulation of current-driven micromagnetic processes.
000201872 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201872 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201872 7001_ $$0P:(DE-Juel1)130747$$aKákay, Attila$$b1
000201872 773__ $$0PERI:(DE-600)1479000-2$$a10.1016/j.jmmm.2014.06.047$$gVol. 369, p. 189 - 196$$p189 - 196$$tJournal of magnetism and magnetic materials$$v369$$x0304-8853$$y2014
000201872 8564_ $$uhttps://juser.fz-juelich.de/record/201872/files/1-s2.0-S0304885314005691-main.pdf$$yRestricted
000201872 8564_ $$uhttps://juser.fz-juelich.de/record/201872/files/1-s2.0-S0304885314005691-main.gif?subformat=icon$$xicon$$yRestricted
000201872 8564_ $$uhttps://juser.fz-juelich.de/record/201872/files/1-s2.0-S0304885314005691-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201872 8564_ $$uhttps://juser.fz-juelich.de/record/201872/files/1-s2.0-S0304885314005691-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201872 8564_ $$uhttps://juser.fz-juelich.de/record/201872/files/1-s2.0-S0304885314005691-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201872 8564_ $$uhttps://juser.fz-juelich.de/record/201872/files/1-s2.0-S0304885314005691-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201872 909CO $$ooai:juser.fz-juelich.de:201872$$pVDB
000201872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130709$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130747$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201872 9132_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000201872 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201872 9141_ $$y2015
000201872 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201872 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201872 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201872 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201872 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201872 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201872 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201872 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201872 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201872 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000201872 980__ $$ajournal
000201872 980__ $$aVDB
000201872 980__ $$aI:(DE-Juel1)PGI-6-20110106
000201872 980__ $$aUNRESTRICTED