000201879 001__ 201879
000201879 005__ 20210129215937.0
000201879 0247_ $$2doi$$a10.1002/chem.201304177
000201879 0247_ $$2ISSN$$a0947-6539
000201879 0247_ $$2ISSN$$a1521-3765
000201879 0247_ $$2WOS$$aWOS:000332757100027
000201879 037__ $$aFZJ-2015-04173
000201879 082__ $$a540
000201879 1001_ $$0P:(DE-HGF)0$$aMonakhov, Kirill Yu.$$b0$$eCorresponding Author
000201879 245__ $$aMagnetochemical Complexity of Hexa- and Heptanuclear Wheel Complexes of Late-3d Ions Supported by N,O-Donor Pyridyl-Methanolate Ligands
000201879 260__ $$aWeinheim$$bWiley-VCH$$c2014
000201879 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435644941_745
000201879 3367_ $$2DataCite$$aOutput Types/Journal article
000201879 3367_ $$00$$2EndNote$$aJournal Article
000201879 3367_ $$2BibTeX$$aARTICLE
000201879 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201879 3367_ $$2DRIVER$$aarticle
000201879 520__ $$aThe scaffold geometries, stability and magnetic features of the (pyridine-2-yl)methanolate (L) supported wheel-shaped transition-metal complexes with compositions [M6L12] (1), [Na⊂(ML2)6]+ (2), and [M′⊂(ML2)6]2+ (3), in which M=CoII, NiII, CuII, and ZnII were investigated with density functional theory (DFT). The goals of this study are manifold: 1) To advance understanding of the magnetism in the synthesized compounds [Na⊂(ML2)6]+ and [M′⊂(ML2)6]2+ that were described in Angew. Chem. Int. Ed.­ 2010, 49, 4443 (I-{Na⊂Ni6}, I-{Ni′⊂Ni6}) and Dalton Trans.­ 2011, 40, 10526 (II-{Na⊂Co6}, II-{Co′⊂Co6}); 2) To disclose how the structural, electronic, and magnetic characteristics of 1, 2, and 3 change upon varying MII from d7 (Co2+) to d10 (Zn2+); 3) To estimate the influence of the Na+ and M′2+ ions (XQ+) occupying the central voids of 2 and 3 on the external and internal magnetic coupling interactions in these spin structures; 4) To assess the relative structural and electrochemical stabilities of 1, 2, and 3. In particular, we focus here on the net spin polarization, the determination of the strength and the sign of the exchange coupling energies, the rationalization of the nature of the magnetic coupling, and the ground-state structures of 1, 2, and 3. Our study combines the broken symmetry DFT approach and the model Hamiltonian methodology implemented in the computational framework CONDON 2.0 for the modeling of molecular spin structures, to interpret magnetic susceptibility measurements of I-{Na⊂Ni6} and I-{Ni′⊂Ni6}. We illustrate that whereas the structures, stability and magnetism of 1, 2, and 3 are indeed influenced by the nature of 3d transition-metals in the {M6} rims, the XQ+ ions in the inner cavities of 2 and 3 impact these properties to an even larger degree. As exemplified by I-{Ni′⊂Ni6}, such heptanuclear complexes exhibit ground-state multiplets that cannot be described by simplistic model of spin-up and spin-down metal centers. Furthermore, we assess how future low-temperature susceptibility measurements at high magnetic fields can augment the investigation of compound 3 with M=Co, Ni
000201879 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201879 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201879 7001_ $$0P:(DE-HGF)0$$aLópez, Xavier$$b1
000201879 7001_ $$0P:(DE-HGF)0$$aSpeldrich, Manfred$$b2
000201879 7001_ $$0P:(DE-HGF)0$$avan Leusen, Jan$$b3
000201879 7001_ $$0P:(DE-Juel1)130782$$aKögerler, Paul$$b4
000201879 7001_ $$0P:(DE-HGF)0$$aBraunstein, Pierre$$b5
000201879 7001_ $$0P:(DE-HGF)0$$aPoblet, Josep M.$$b6
000201879 773__ $$0PERI:(DE-600)1478547-x$$a10.1002/chem.201304177$$gVol. 20, no. 13, p. 3769 - 3781$$n13$$p3769 - 3781$$tChemistry - a European journal$$v20$$x0947-6539$$y2014
000201879 909CO $$ooai:juser.fz-juelich.de:201879$$pVDB
000201879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130782$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201879 9132_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000201879 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201879 9141_ $$y2015
000201879 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201879 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201879 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201879 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201879 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201879 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201879 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201879 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201879 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201879 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000201879 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000201879 980__ $$ajournal
000201879 980__ $$aVDB
000201879 980__ $$aI:(DE-Juel1)PGI-6-20110106
000201879 980__ $$aUNRESTRICTED