000201881 001__ 201881
000201881 005__ 20210129215937.0
000201881 0247_ $$2doi$$a10.1039/c4dt00306c
000201881 0247_ $$2ISSN$$a0300-9246
000201881 0247_ $$2ISSN$$a1364-5447
000201881 0247_ $$2ISSN$$a1470-479X
000201881 0247_ $$2ISSN$$a1472-7773
000201881 0247_ $$2ISSN$$a1477-9226
000201881 0247_ $$2ISSN$$a1477-9234
000201881 0247_ $$2WOS$$aWOS:000335926800025
000201881 0247_ $$2altmetric$$aaltmetric:2173318
000201881 0247_ $$2pmid$$apmid:24705925
000201881 037__ $$aFZJ-2015-04175
000201881 082__ $$a540
000201881 1001_ $$0P:(DE-HGF)0$$aGhisolfi, Alessio$$b0
000201881 245__ $$aA comparative synthetic, magnetic and theoretical study of functional M$_{4}$Cl $_{4}$ cubane-type Co(ii) and Ni(ii) complexes
000201881 260__ $$aLondon$$bSoc.$$c2014
000201881 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435644991_2391
000201881 3367_ $$2DataCite$$aOutput Types/Journal article
000201881 3367_ $$00$$2EndNote$$aJournal Article
000201881 3367_ $$2BibTeX$$aARTICLE
000201881 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201881 3367_ $$2DRIVER$$aarticle
000201881 520__ $$aWe describe the synthesis, structures, and magnetochemistry of new M4Cl4 cubane-type cobalt(II) and nickel(II) complexes with the formula [M(μ3-Cl)Cl(HL·S)]4 (1: M = Co; 2: M = Ni), where HL·S represents a pyridyl-alcohol-type ligand with a thioether functional group, introduced to allow subsequent binding to Au surfaces. Dc and ac magnetic susceptibility data of 1 and 2 were modeled with a full spin Hamiltonian implemented in the computational framework CONDON 2.0. Although both coordination clusters 1 and 2 are isostructural, with each of their transition metal ions in a pseudo-octahedral coordination environment of four Cl atoms and N,O-donor atoms of one chelating HL·S ligand, the substantially different ligand field effects of Co(II) and Ni(II) results in stark differences in their magnetism. In contrast to compound 1 which exhibits a dominant antiferromagnetic intramolecular coupling (J = −0.14 cm−1), 2 is characterised by a ferromagnetic coupling (J = +10.6 cm−1) and is considered to be a single-molecule magnet (SMM), a feature of special interest for future surface deposition studies. An analysis based on density functional theory (DFT) was performed to explore possible magnetostructural correlations in these compounds. Using a two-J model Hamiltonian, it revealed that compound 1 has four positive and two (small) negative JCoCo isotropic interactions leading to a SHS = 6 ground state. Taking into account the magnetic anisotropy, one would recover a MS = 0 ground state since D > 0 from computations. In 2, all the J constants are positive and, in this framework, the zero-field splitting energy characterising the axial anisotropy was estimated to be negative (D = −0.44 cm−1). The computational results are consistent with compound 2 being an SMM.
000201881 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000201881 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201881 7001_ $$0P:(DE-HGF)0$$aMonakhov, Kirill Yu.$$b1
000201881 7001_ $$0P:(DE-HGF)0$$aPattacini, Roberto$$b2
000201881 7001_ $$0P:(DE-HGF)0$$aBraunstein, Pierre$$b3$$eCorresponding Author
000201881 7001_ $$0P:(DE-HGF)0$$aLópez, Xavier$$b4
000201881 7001_ $$0P:(DE-HGF)0$$ade Graaf, Coen$$b5
000201881 7001_ $$0P:(DE-HGF)0$$aSpeldrich, Manfred$$b6
000201881 7001_ $$0P:(DE-HGF)0$$avan Leusen, Jan$$b7
000201881 7001_ $$0P:(DE-HGF)0$$aSchilder, Helmut$$b8
000201881 7001_ $$0P:(DE-Juel1)130782$$aKögerler, Paul$$b9
000201881 773__ $$0PERI:(DE-600)1472887-4$$a10.1039/c4dt00306c$$gVol. 43, no. 21, p. 7847 -$$n21$$p7847 -$$tDalton transactions$$v43$$x1477-9234$$y2014
000201881 8564_ $$uhttps://juser.fz-juelich.de/record/201881/files/c4dt00306c.pdf$$yRestricted
000201881 8564_ $$uhttps://juser.fz-juelich.de/record/201881/files/c4dt00306c.gif?subformat=icon$$xicon$$yRestricted
000201881 8564_ $$uhttps://juser.fz-juelich.de/record/201881/files/c4dt00306c.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201881 8564_ $$uhttps://juser.fz-juelich.de/record/201881/files/c4dt00306c.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201881 8564_ $$uhttps://juser.fz-juelich.de/record/201881/files/c4dt00306c.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201881 8564_ $$uhttps://juser.fz-juelich.de/record/201881/files/c4dt00306c.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201881 909CO $$ooai:juser.fz-juelich.de:201881$$pVDB
000201881 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130782$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000201881 9132_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000201881 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000201881 9141_ $$y2015
000201881 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201881 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201881 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201881 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201881 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201881 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201881 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201881 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201881 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201881 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201881 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000201881 980__ $$ajournal
000201881 980__ $$aVDB
000201881 980__ $$aI:(DE-Juel1)PGI-6-20110106
000201881 980__ $$aUNRESTRICTED