000020189 001__ 20189
000020189 005__ 20240529111728.0
000020189 0247_ $$2DOI$$a10.1088/0953-8984/23/25/254203
000020189 0247_ $$2WOS$$aWOS:000291433000006
000020189 0247_ $$2MLZ$$a0953-8984-23-25-254203
000020189 037__ $$aPreJuSER-20189
000020189 041__ $$aeng
000020189 082__ $$a530
000020189 084__ $$2WoS$$aPhysics, Condensed Matter
000020189 1001_ $$0P:(DE-HGF)0$$aXia, X.$$b0
000020189 245__ $$aNanostructured diblock copolymer films with embedded magnetic nanoparticles
000020189 260__ $$aBristol$$bIOP Publ.$$c2011
000020189 300__ $$a254203
000020189 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020189 3367_ $$2DataCite$$aOutput Types/Journal article
000020189 3367_ $$00$$2EndNote$$aJournal Article
000020189 3367_ $$2BibTeX$$aARTICLE
000020189 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020189 3367_ $$2DRIVER$$aarticle
000020189 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v23$$x0953-8984$$y25
000020189 500__ $$aWe thank Barbara Russ and Andreas Neubauer for their help during the magnetic measurements and Walter Schirmacher for fruitful discussion. XX thanks the Erasmus Mundus MaMaSELF program for funding. MAR thanks the Bavarian State Ministry of Sciences, Research and Arts for funding this research work through the International Graduate School 'Materials Science of Complex Interfaces' (CompInt).
000020189 520__ $$aNanostructured diblock copolymer films with embedded magnetic nanoparticles are prepared by solution casting. The diblock copolymer polystyrene-block-polymethylmethacrylate with a fully deuterated polystyrene block of a weight ratio of 0.22 is used as a structure-directing matrix. Maghemite nanoparticles (gamma-Fe2O3) are coated with polystyrene and thus have a selective affinity to the minority block of the diblock copolymer. The hybrid film morphology is investigated as a function of nanoparticle concentration. The surface structure is probed with atomic force microscopy and scanning electron microscopy. The inner film structure and the structure at the polymer-substrate interface are detected with grazing incidence small angle neutron scattering (GISANS). Irrespective of the nanoparticle concentration a well developed micro-phase separation structure is present. From the Bragg peaks observed in the GISANS data a linear nanoparticle concentration dependence of the inter-domain spacing of the micro-phase separation structure is determined. The superparamagnetic and blocking behavior can be explained with a generalized Stoner-Wohlfarth-Neel theory which includes either an elastic torque being exerted on the nanoparticles by the field or a broad distribution of anisotropy constants.
000020189 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000020189 536__ $$0G:(DE-Juel1)FUEK415$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000020189 588__ $$aDataset connected to Web of Science
000020189 650_7 $$2WoSType$$aJ
000020189 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000020189 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000020189 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x1
000020189 65017 $$0V:(DE-MLZ)GC-150-1$$2V:(DE-HGF)$$aKey Technologies$$x0
000020189 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000020189 7001_ $$0P:(DE-HGF)0$$aMetwalli, E.$$b1
000020189 7001_ $$0P:(DE-Juel1)VDB105258$$aRuderer, M.A.$$b2$$uFZJ
000020189 7001_ $$0P:(DE-HGF)0$$aKorstgens, V.$$b3
000020189 7001_ $$0P:(DE-Juel1)VDB7313$$aBusch, P.$$b4$$uFZJ
000020189 7001_ $$0P:(DE-HGF)0$$aBoni, P.$$b5
000020189 7001_ $$0P:(DE-HGF)0$$aMuller-Buschbaum, P.$$b6
000020189 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/23/25/254203$$gVol. 23, p. 254203$$p254203$$q23<254203$$tJournal of physics / Condensed matter$$v23$$x0953-8984$$y2011
000020189 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/23/25/254203
000020189 909CO $$ooai:juser.fz-juelich.de:20189$$pVDB$$pVDB:MLZ
000020189 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000020189 9141_ $$y2011
000020189 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000020189 9131_ $$0G:(DE-Juel1)FUEK415$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000020189 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000020189 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$gPGI$$kPGI-4$$lStreumethoden$$x0
000020189 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x1
000020189 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$gJCNS$$kJCNS-2$$lStreumethoden$$x2
000020189 970__ $$aVDB:(DE-Juel1)135307
000020189 980__ $$aVDB
000020189 980__ $$aConvertedRecord
000020189 980__ $$ajournal
000020189 980__ $$aI:(DE-Juel1)PGI-4-20110106
000020189 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000020189 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000020189 980__ $$aUNRESTRICTED
000020189 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000020189 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000020189 981__ $$aI:(DE-Juel1)JCNS-2-20110106