000201900 001__ 201900
000201900 005__ 20210129215940.0
000201900 0247_ $$2doi$$a10.1007/s10008-012-1890-5
000201900 0247_ $$2ISSN$$a1432-8488
000201900 0247_ $$2ISSN$$a1433-0768
000201900 0247_ $$2WOS$$aWOS:000313800200011
000201900 037__ $$aFZJ-2015-04190
000201900 082__ $$a540
000201900 1001_ $$0P:(DE-Juel1)131014$$aValov, I.$$b0$$eCorresponding Author
000201900 245__ $$aNucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories
000201900 260__ $$aBerlin$$bSpringer$$c2013
000201900 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435648260_1776
000201900 3367_ $$2DataCite$$aOutput Types/Journal article
000201900 3367_ $$00$$2EndNote$$aJournal Article
000201900 3367_ $$2BibTeX$$aARTICLE
000201900 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201900 3367_ $$2DRIVER$$aarticle
000201900 520__ $$aThe impact of the electrochemical nucleation on the switching kinetics in many nanoscaled redox-based resistive switching memories is critically discussed. In the case of the atomic switch, the system is site invariant and the nucleation process is strictly localized below the STM tip. Using RbAg4I5 solid electrolyte, nucleation was found to be rate limiting. The electrochemical metallization memory cells (gapless type atomic switch) operate at conditions closer to the conventional nucleation. They introduce additional difficulties for interpretation of the experimental results due to formation of hillocks, of surface oxide barrier films, induction of strain, and the influence of the high electric field. In valence change memories, the nucleation seems to be less important because of the higher applied voltages. The results are discussed in the context of the atomistic theory of electrochemical nucleation. We believe that re-analysis of the experimental data for many systems will reveal that the nucleation is limiting the switching time.
000201900 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000201900 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201900 7001_ $$0P:(DE-Juel1)130982$$aStaikov, G.$$b1
000201900 773__ $$0PERI:(DE-600)1478940-1$$a10.1007/s10008-012-1890-5$$gVol. 17, no. 2, p. 365 - 371$$n2$$p365 - 371$$tJournal of solid state electrochemistry$$v17$$x1433-0768$$y2013
000201900 8564_ $$uhttps://juser.fz-juelich.de/record/201900/files/art_10.1007_s10008-012-1890-5.pdf$$yRestricted
000201900 8564_ $$uhttps://juser.fz-juelich.de/record/201900/files/art_10.1007_s10008-012-1890-5.gif?subformat=icon$$xicon$$yRestricted
000201900 8564_ $$uhttps://juser.fz-juelich.de/record/201900/files/art_10.1007_s10008-012-1890-5.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201900 8564_ $$uhttps://juser.fz-juelich.de/record/201900/files/art_10.1007_s10008-012-1890-5.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201900 8564_ $$uhttps://juser.fz-juelich.de/record/201900/files/art_10.1007_s10008-012-1890-5.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201900 8564_ $$uhttps://juser.fz-juelich.de/record/201900/files/art_10.1007_s10008-012-1890-5.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201900 909CO $$ooai:juser.fz-juelich.de:201900$$pVDB
000201900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130982$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201900 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201900 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000201900 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201900 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201900 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201900 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201900 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201900 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201900 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201900 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201900 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000201900 980__ $$ajournal
000201900 980__ $$aVDB
000201900 980__ $$aI:(DE-Juel1)PGI-7-20110106
000201900 980__ $$aUNRESTRICTED