000201901 001__ 201901
000201901 005__ 20210129215940.0
000201901 0247_ $$2doi$$a10.1080/00150193.2014.894440
000201901 0247_ $$2ISSN$$a0015-0193
000201901 0247_ $$2ISSN$$a1563-5112
000201901 0247_ $$2WOS$$aWOS:000335946100001
000201901 037__ $$aFZJ-2015-04191
000201901 082__ $$a530
000201901 1001_ $$0P:(DE-HGF)0$$aPiecha, J.$$b0$$eCorresponding Author
000201901 245__ $$aInfluence of Proton Exchange on LiNbO $_{3}$ Crystals Structure
000201901 260__ $$aLondon [u.a.]$$bTaylor & Francis$$c2014
000201901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435648333_5524
000201901 3367_ $$2DataCite$$aOutput Types/Journal article
000201901 3367_ $$00$$2EndNote$$aJournal Article
000201901 3367_ $$2BibTeX$$aARTICLE
000201901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201901 3367_ $$2DRIVER$$aarticle
000201901 520__ $$aProton exchange reaction (Li+/H+) was carried out on LiNbO3 crystals (z-cut). Reaction was conducted in concentrated environment of HNO3, at stabilized temperature 110°C. Portion of acid was added after each 24 h interval. The reference LiNbO3 crystal sample and etched for 240 h HxLi1−xNbO3 crystals were used for surface sensitive studies. SIMS test proved that H and Li the proton exchange reaction took place. Electronic structure was checked by XPS. The Li, Nb, O core lines, and VB line were analyzed. Substitution of Li by H ions deformed shape of the XPS lines that indicated crystal structure change.
000201901 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000201901 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201901 7001_ $$0P:(DE-Juel1)130993$$aSzot, K.$$b1
000201901 7001_ $$0P:(DE-HGF)0$$aPilch, M.$$b2
000201901 7001_ $$0P:(DE-HGF)0$$aGruszka, I.$$b3
000201901 7001_ $$0P:(DE-HGF)0$$aMolak, A.$$b4
000201901 773__ $$0PERI:(DE-600)2042895-9$$a10.1080/00150193.2014.894440$$gVol. 466, no. 1, p. 1 - 7$$n1$$p1 - 7$$tFerroelectrics$$v466$$x1563-5112$$y2014
000201901 909CO $$ooai:juser.fz-juelich.de:201901$$pVDB
000201901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130993$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201901 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000201901 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000201901 9141_ $$y2015
000201901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201901 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201901 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201901 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201901 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201901 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201901 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000201901 980__ $$ajournal
000201901 980__ $$aVDB
000201901 980__ $$aI:(DE-Juel1)PGI-7-20110106
000201901 980__ $$aUNRESTRICTED