000201903 001__ 201903 000201903 005__ 20250129094253.0 000201903 0247_ $$2doi$$a10.1088/0022-3727/47/13/135301 000201903 0247_ $$2ISSN$$a0022-3727 000201903 0247_ $$2ISSN$$a0262-8171 000201903 0247_ $$2ISSN$$a1361-6463 000201903 0247_ $$2WOS$$aWOS:000332791200011 000201903 037__ $$aFZJ-2015-04193 000201903 082__ $$a530 000201903 1001_ $$0P:(DE-HGF)0$$aNowak, A.$$b0$$eCorresponding Author 000201903 245__ $$aLow temperature reduction in Ta–O and Nb–O thin films 000201903 260__ $$aBristol$$bIOP Publ.$$c2014 000201903 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435648671_2005 000201903 3367_ $$2DataCite$$aOutput Types/Journal article 000201903 3367_ $$00$$2EndNote$$aJournal Article 000201903 3367_ $$2BibTeX$$aARTICLE 000201903 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000201903 3367_ $$2DRIVER$$aarticle 000201903 520__ $$aThe effect of thermal reduction in ultra-high vacuum was studied in films of tantalum and niobium oxides obtained by oxidation of deposited metallic layers. The obtained films appeared to be amorphous and their stoichiometry was not uniform. For the Ta based film the main component was Ta2O5 while for the oxidized Nb film the pentoxide was present in the topmost part of the film and the thickest layer had the electron density assigned to NbO2. Thermal reduction was studied with the use of in situ photoelectron spectroscopy which revealed for the Nb–O film a strong effect for temperature as low as 300 °C. The Nb–O film reduced at 600 °C exhibited dominating metallic-like electronic states assigned to NbO. For the Ta–O film the significant reduction process started above 600 °C. At 900 °C the film showed metallic-like states which can be attributed to Ta2O. A single crystal of Nb2O5 showed no effect of reduction for temperatures up to 500 °C. A test performed with the use of local conductivity atomic force microscopy showed the most interesting bipolar-like resistive switching properties for the films reduced at temperatures up to 300 °C. 000201903 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0 000201903 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000201903 7001_ $$0P:(DE-Juel1)130884$$aPersson, J.$$b1 000201903 7001_ $$0P:(DE-HGF)0$$aSchmelzer, B.$$b2 000201903 7001_ $$0P:(DE-HGF)0$$aSzade, J.$$b3 000201903 7001_ $$0P:(DE-Juel1)130993$$aSzot, K.$$b4 000201903 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/0022-3727/47/13/135301$$gVol. 47, no. 13, p. 135301 -$$n13$$p135301 -$$tJournal of physics / D$$v47$$x1361-6463$$y2014 000201903 8564_ $$uhttps://juser.fz-juelich.de/record/201903/files/0022-3727_47_13_135301.pdf$$yRestricted 000201903 8564_ $$uhttps://juser.fz-juelich.de/record/201903/files/0022-3727_47_13_135301.pdf?subformat=pdfa$$xpdfa$$yRestricted 000201903 909CO $$ooai:juser.fz-juelich.de:201903$$pVDB 000201903 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000201903 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000201903 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000201903 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000201903 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000201903 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000201903 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000201903 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000201903 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000201903 9141_ $$y2015 000201903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130884$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000201903 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130993$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000201903 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000201903 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0 000201903 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x0 000201903 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x1 000201903 980__ $$ajournal 000201903 980__ $$aVDB 000201903 980__ $$aI:(DE-Juel1)PGI-4-20110106 000201903 980__ $$aI:(DE-Juel1)PGI-7-20110106 000201903 980__ $$aUNRESTRICTED 000201903 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000201903 981__ $$aI:(DE-Juel1)PGI-7-20110106