000201911 001__ 201911
000201911 005__ 20240711092252.0
000201911 0247_ $$2doi$$a10.1016/j.memsci.2011.10.005
000201911 0247_ $$2ISSN$$a0376-7388
000201911 0247_ $$2ISSN$$a1873-3123
000201911 0247_ $$2WOS$$aWOS:000300549700028
000201911 0247_ $$2altmetric$$aaltmetric:21826688
000201911 037__ $$aFZJ-2015-04201
000201911 082__ $$a570
000201911 1001_ $$0P:(DE-Juel1)138890$$aPećanac, G.$$b0$$ufzj
000201911 245__ $$aMechanical properties and lifetime predictions for Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3−δ}$ membrane material
000201911 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2011
000201911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435649311_1776
000201911 3367_ $$2DataCite$$aOutput Types/Journal article
000201911 3367_ $$00$$2EndNote$$aJournal Article
000201911 3367_ $$2BibTeX$$aARTICLE
000201911 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201911 3367_ $$2DRIVER$$aarticle
000201911 520__ $$aThe mixed ion–electron conductor Ba0.5Sr0.5Co0.8Fe0.2O3−δ has a strong application potential as high-temperature gas separation membrane. However, for real components the mechanical integrity of this brittle perovskite ceramic will be challenged by the boundary conditions of transient and stationary temperature exposure. In particular, long-term failure mechanisms such as static fatigue at room temperature and creep rupture at operation temperature may occur. The relevance of both effects is assessed. The effect of slow crack growth at room temperature has been investigated using fracture stresses obtained in biaxial bending under different loading rates. The provided data permit to assess the fracture stresses for different loading rates. Furthermore, a strength–probability–time plot is derived that permits a prediction of the lifetime under static loading conditions and hence the long-term reliability at room temperature. The creep rupture at typical operating temperatures was analysed using three-point bending tests permitting a determination of the failure stress in this application-related combined tensile–compressive mode. The creep rupture data are described by a modified Monkman–Grant relationship.
000201911 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000201911 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201911 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b1$$ufzj
000201911 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, J.$$b2$$eCorresponding Author$$ufzj
000201911 773__ $$0PERI:(DE-600)1491419-0$$a10.1016/j.memsci.2011.10.005$$gVol. 385-386, p. 263 - 268$$p263 - 268$$tJournal of membrane science$$v385-386$$x0376-7388$$y2011
000201911 8564_ $$uhttps://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.pdf$$yRestricted
000201911 8564_ $$uhttps://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.gif?subformat=icon$$xicon$$yRestricted
000201911 8564_ $$uhttps://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201911 8564_ $$uhttps://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201911 8564_ $$uhttps://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201911 8564_ $$uhttps://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201911 909CO $$ooai:juser.fz-juelich.de:201911$$pVDB
000201911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138890$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201911 9132_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000201911 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000201911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201911 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201911 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201911 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201911 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000201911 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201911 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000201911 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000201911 980__ $$ajournal
000201911 980__ $$aVDB
000201911 980__ $$aI:(DE-Juel1)IEK-1-20101013
000201911 980__ $$aI:(DE-Juel1)IEK-2-20101013
000201911 980__ $$aUNRESTRICTED
000201911 981__ $$aI:(DE-Juel1)IMD-1-20101013
000201911 981__ $$aI:(DE-Juel1)IMD-2-20101013
000201911 981__ $$aI:(DE-Juel1)IEK-2-20101013