001     201911
005     20240711092252.0
024 7 _ |a 10.1016/j.memsci.2011.10.005
|2 doi
024 7 _ |a 0376-7388
|2 ISSN
024 7 _ |a 1873-3123
|2 ISSN
024 7 _ |a WOS:000300549700028
|2 WOS
024 7 _ |a altmetric:21826688
|2 altmetric
037 _ _ |a FZJ-2015-04201
082 _ _ |a 570
100 1 _ |a Pećanac, G.
|0 P:(DE-Juel1)138890
|b 0
|u fzj
245 _ _ |a Mechanical properties and lifetime predictions for Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3−δ}$ membrane material
260 _ _ |a New York, NY [u.a.]
|c 2011
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435649311_1776
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The mixed ion–electron conductor Ba0.5Sr0.5Co0.8Fe0.2O3−δ has a strong application potential as high-temperature gas separation membrane. However, for real components the mechanical integrity of this brittle perovskite ceramic will be challenged by the boundary conditions of transient and stationary temperature exposure. In particular, long-term failure mechanisms such as static fatigue at room temperature and creep rupture at operation temperature may occur. The relevance of both effects is assessed. The effect of slow crack growth at room temperature has been investigated using fracture stresses obtained in biaxial bending under different loading rates. The provided data permit to assess the fracture stresses for different loading rates. Furthermore, a strength–probability–time plot is derived that permits a prediction of the lifetime under static loading conditions and hence the long-term reliability at room temperature. The creep rupture at typical operating temperatures was analysed using three-point bending tests permitting a determination of the failure stress in this application-related combined tensile–compressive mode. The creep rupture data are described by a modified Monkman–Grant relationship.
536 _ _ |a 122 - Power Plants (POF2-122)
|0 G:(DE-HGF)POF2-122
|c POF2-122
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Baumann, S.
|0 P:(DE-Juel1)129587
|b 1
|u fzj
700 1 _ |a Malzbender, J.
|0 P:(DE-Juel1)129755
|b 2
|e Corresponding Author
|u fzj
773 _ _ |a 10.1016/j.memsci.2011.10.005
|g Vol. 385-386, p. 263 - 268
|0 PERI:(DE-600)1491419-0
|p 263 - 268
|t Journal of membrane science
|v 385-386
|y 2011
|x 0376-7388
856 4 _ |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201911
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138890
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129755
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-122
|2 G:(DE-HGF)POF2-100
|v Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21