Hauptseite > Publikationsdatenbank > Mechanical properties and lifetime predictions for Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3−δ}$ membrane material > print |
001 | 201911 | ||
005 | 20240711092252.0 | ||
024 | 7 | _ | |a 10.1016/j.memsci.2011.10.005 |2 doi |
024 | 7 | _ | |a 0376-7388 |2 ISSN |
024 | 7 | _ | |a 1873-3123 |2 ISSN |
024 | 7 | _ | |a WOS:000300549700028 |2 WOS |
024 | 7 | _ | |a altmetric:21826688 |2 altmetric |
037 | _ | _ | |a FZJ-2015-04201 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Pećanac, G. |0 P:(DE-Juel1)138890 |b 0 |u fzj |
245 | _ | _ | |a Mechanical properties and lifetime predictions for Ba$_{0.5}$Sr$_{0.5}$Co$_{0.8}$Fe$_{0.2}$O$_{3−δ}$ membrane material |
260 | _ | _ | |a New York, NY [u.a.] |c 2011 |b Elsevier |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1435649311_1776 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a The mixed ion–electron conductor Ba0.5Sr0.5Co0.8Fe0.2O3−δ has a strong application potential as high-temperature gas separation membrane. However, for real components the mechanical integrity of this brittle perovskite ceramic will be challenged by the boundary conditions of transient and stationary temperature exposure. In particular, long-term failure mechanisms such as static fatigue at room temperature and creep rupture at operation temperature may occur. The relevance of both effects is assessed. The effect of slow crack growth at room temperature has been investigated using fracture stresses obtained in biaxial bending under different loading rates. The provided data permit to assess the fracture stresses for different loading rates. Furthermore, a strength–probability–time plot is derived that permits a prediction of the lifetime under static loading conditions and hence the long-term reliability at room temperature. The creep rupture at typical operating temperatures was analysed using three-point bending tests permitting a determination of the failure stress in this application-related combined tensile–compressive mode. The creep rupture data are described by a modified Monkman–Grant relationship. |
536 | _ | _ | |a 122 - Power Plants (POF2-122) |0 G:(DE-HGF)POF2-122 |c POF2-122 |f POF II |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Baumann, S. |0 P:(DE-Juel1)129587 |b 1 |u fzj |
700 | 1 | _ | |a Malzbender, J. |0 P:(DE-Juel1)129755 |b 2 |e Corresponding Author |u fzj |
773 | _ | _ | |a 10.1016/j.memsci.2011.10.005 |g Vol. 385-386, p. 263 - 268 |0 PERI:(DE-600)1491419-0 |p 263 - 268 |t Journal of membrane science |v 385-386 |y 2011 |x 0376-7388 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/201911/files/1-s2.0-S0376738811007411-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:201911 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)138890 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129587 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129755 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-111 |2 G:(DE-HGF)POF3-100 |v Efficient and Flexible Power Plants |x 0 |
913 | 1 | _ | |a DE-HGF |b Energie |l Rationelle Energieumwandlung und -nutzung |1 G:(DE-HGF)POF2-120 |0 G:(DE-HGF)POF2-122 |2 G:(DE-HGF)POF2-100 |v Power Plants |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-2-20101013 |k IEK-2 |l Werkstoffstruktur und -eigenschaften |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|