000201912 001__ 201912
000201912 005__ 20240711092252.0
000201912 0247_ $$2doi$$a10.1016/j.jnucmat.2011.01.013
000201912 0247_ $$2ISSN$$a0022-3115
000201912 0247_ $$2ISSN$$a1873-4820
000201912 0247_ $$2WOS$$aWOS:000298128100011
000201912 037__ $$aFZJ-2015-04202
000201912 082__ $$a530
000201912 1001_ $$0P:(DE-HGF)0$$aKlimov, N.$$b0$$eCorresponding Author
000201912 245__ $$aExperimental study of PFCs erosion and eroded material deposition under ITER-like transient loads at the plasma gun facility QSPA-T
000201912 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2011
000201912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435649475_745
000201912 3367_ $$2DataCite$$aOutput Types/Journal article
000201912 3367_ $$00$$2EndNote$$aJournal Article
000201912 3367_ $$2BibTeX$$aARTICLE
000201912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201912 3367_ $$2DRIVER$$aarticle
000201912 520__ $$aThe paper concerns experimental investigations of plasma facing components erosion under the plasma heat loads expected in ITER divertor during transient events such as the Type I Edge-Localized Modes and the disruptions. The experiments were carried out at the TRINITI plasma gun QSPA-T. The carbon fiber composite and tungsten macrobrush targets designed for ITER were exposed to multiple plasma pulses of duration 0.5 ms and deposited energy in the range of 0.2–2.5 MJ/m2. Between some of the pulses the eroded surface was analyzed with profilometric measurements and electron microscopy. The CFC erosion is determined mainly by damages to the PAN-fibers. While the energy increases from 0.2 to 2.4 MJ/m2 the removed layer of PAN-fibers area increases from 0.01 to 10 μm per pulse. The erosion of tungsten (pure and lanthanum oxide-doped tungsten) is shown to be determined mainly by crack formation, melt layer movement and droplets ejection.
000201912 536__ $$0G:(DE-HGF)POF2-135$$a135 - Plasma-wall interactions (POF2-135)$$cPOF2-135$$fPOF II$$x0
000201912 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201912 7001_ $$0P:(DE-HGF)0$$aPodkovyrov, V.$$b1
000201912 7001_ $$0P:(DE-HGF)0$$aZhitlukhin, A.$$b2
000201912 7001_ $$0P:(DE-HGF)0$$aKovalenko, D.$$b3
000201912 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b4$$ufzj
000201912 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b5$$ufzj
000201912 7001_ $$0P:(DE-HGF)0$$aLandman, I.$$b6
000201912 7001_ $$0P:(DE-HGF)0$$aPestchanyi, S.$$b7
000201912 7001_ $$0P:(DE-HGF)0$$aBazylev, B.$$b8
000201912 7001_ $$0P:(DE-HGF)0$$aJaneschitz, G.$$b9
000201912 7001_ $$0P:(DE-HGF)0$$aLoarte, A.$$b10
000201912 7001_ $$0P:(DE-HGF)0$$aMerola, M.$$b11
000201912 7001_ $$0P:(DE-HGF)0$$aHirai, T.$$b12
000201912 7001_ $$0P:(DE-HGF)0$$aFederici, G.$$b13
000201912 7001_ $$0P:(DE-HGF)0$$aRiccardi, B.$$b14
000201912 7001_ $$0P:(DE-HGF)0$$aMazul, I.$$b15
000201912 7001_ $$0P:(DE-HGF)0$$aGiniyatulin, R.$$b16
000201912 7001_ $$0P:(DE-HGF)0$$aKhimchenko, L.$$b17
000201912 7001_ $$0P:(DE-HGF)0$$aKoidan, V.$$b18
000201912 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2011.01.013$$gVol. 415, no. 1, p. S59 - S64$$n1$$pS59 - S64$$tJournal of nuclear materials$$v415$$x0022-3115$$y2011
000201912 8564_ $$uhttps://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.pdf$$yRestricted
000201912 8564_ $$uhttps://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.gif?subformat=icon$$xicon$$yRestricted
000201912 8564_ $$uhttps://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201912 8564_ $$uhttps://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201912 8564_ $$uhttps://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201912 8564_ $$uhttps://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201912 909CO $$ooai:juser.fz-juelich.de:201912$$pVDB
000201912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201912 9132_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000201912 9131_ $$0G:(DE-HGF)POF2-135$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-wall interactions$$x0
000201912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201912 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201912 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201912 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201912 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000201912 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201912 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000201912 9201_ $$0I:(DE-Juel1)N-M-20100415$$kN-M$$lHeißes Materiallabor$$x1
000201912 980__ $$ajournal
000201912 980__ $$aVDB
000201912 980__ $$aI:(DE-Juel1)IEK-2-20101013
000201912 980__ $$aI:(DE-Juel1)N-M-20100415
000201912 980__ $$aUNRESTRICTED
000201912 981__ $$aI:(DE-Juel1)IMD-1-20101013
000201912 981__ $$aI:(DE-Juel1)N-M-20100415