001     201912
005     20240711092252.0
024 7 _ |a 10.1016/j.jnucmat.2011.01.013
|2 doi
024 7 _ |a 0022-3115
|2 ISSN
024 7 _ |a 1873-4820
|2 ISSN
024 7 _ |a WOS:000298128100011
|2 WOS
037 _ _ |a FZJ-2015-04202
082 _ _ |a 530
100 1 _ |a Klimov, N.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Experimental study of PFCs erosion and eroded material deposition under ITER-like transient loads at the plasma gun facility QSPA-T
260 _ _ |a Amsterdam [u.a.]
|c 2011
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435649475_745
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The paper concerns experimental investigations of plasma facing components erosion under the plasma heat loads expected in ITER divertor during transient events such as the Type I Edge-Localized Modes and the disruptions. The experiments were carried out at the TRINITI plasma gun QSPA-T. The carbon fiber composite and tungsten macrobrush targets designed for ITER were exposed to multiple plasma pulses of duration 0.5 ms and deposited energy in the range of 0.2–2.5 MJ/m2. Between some of the pulses the eroded surface was analyzed with profilometric measurements and electron microscopy. The CFC erosion is determined mainly by damages to the PAN-fibers. While the energy increases from 0.2 to 2.4 MJ/m2 the removed layer of PAN-fibers area increases from 0.01 to 10 μm per pulse. The erosion of tungsten (pure and lanthanum oxide-doped tungsten) is shown to be determined mainly by crack formation, melt layer movement and droplets ejection.
536 _ _ |a 135 - Plasma-wall interactions (POF2-135)
|0 G:(DE-HGF)POF2-135
|c POF2-135
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Podkovyrov, V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhitlukhin, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kovalenko, D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Linke, J.
|0 P:(DE-Juel1)129747
|b 4
|u fzj
700 1 _ |a Pintsuk, G.
|0 P:(DE-Juel1)129778
|b 5
|u fzj
700 1 _ |a Landman, I.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pestchanyi, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bazylev, B.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Janeschitz, G.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Loarte, A.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Merola, M.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Hirai, T.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Federici, G.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Riccardi, B.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Mazul, I.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Giniyatulin, R.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Khimchenko, L.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Koidan, V.
|0 P:(DE-HGF)0
|b 18
773 _ _ |a 10.1016/j.jnucmat.2011.01.013
|g Vol. 415, no. 1, p. S59 - S64
|0 PERI:(DE-600)2001279-2
|n 1
|p S59 - S64
|t Journal of nuclear materials
|v 415
|y 2011
|x 0022-3115
856 4 _ |u https://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/201912/files/1-s2.0-S0022311511000250-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:201912
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129747
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129778
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF2-130
|0 G:(DE-HGF)POF2-135
|2 G:(DE-HGF)POF2-100
|v Plasma-wall interactions
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)N-M-20100415
|k N-M
|l Heißes Materiallabor
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)N-M-20100415
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)N-M-20100415


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21