000201913 001__ 201913
000201913 005__ 20240711092252.0
000201913 0247_ $$2doi$$a10.1016/j.jnucmat.2010.08.065
000201913 0247_ $$2ISSN$$a0022-3115
000201913 0247_ $$2ISSN$$a1873-4820
000201913 0247_ $$2WOS$$aWOS:000298128100009
000201913 037__ $$aFZJ-2015-04203
000201913 082__ $$a530
000201913 1001_ $$0P:(DE-Juel1)129751$$aLoewenhoff, Th.$$b0$$eCorresponding Author$$ufzj
000201913 245__ $$aExperimental simulation of Edge Localised Modes using focused electron beams – features of a circular load pattern
000201913 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2011
000201913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435649633_5524
000201913 3367_ $$2DataCite$$aOutput Types/Journal article
000201913 3367_ $$00$$2EndNote$$aJournal Article
000201913 3367_ $$2BibTeX$$aARTICLE
000201913 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201913 3367_ $$2DRIVER$$aarticle
000201913 520__ $$aThe knowledge about degradation processes caused by Edge Localised Modes (ELMs) on plasma facing materials (PFMs) in future confinement experiments is essential to allow lifetime estimations for first wall and divertor components. Electron beam simulations of the occurring heat loads have the advantage to be able to work at higher frequencies compared to other experiments (e.g. plasma streams), allowing a large number of ELM-like heat pulses. This paper deals with the electron beam guidance method used in the JUDITH 2 facility in Forschungszentrum Jülich (Germany). As the beam is described well by a Gaussian profile with a variable FWHM, depending on several parameters, e.g. vacuum pressure, the guidance is of special interest in order to achieve an approximately homogeneous (ELM-like) loading. A circular pattern turned out to provide advantages, in particular related to an increased stability against beam width fluctuations
000201913 536__ $$0G:(DE-HGF)POF2-135$$a135 - Plasma-wall interactions (POF2-135)$$cPOF2-135$$fPOF II$$x0
000201913 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201913 7001_ $$0P:(DE-HGF)0$$aHirai, T.$$b1
000201913 7001_ $$0P:(DE-HGF)0$$aKeusemann, S.$$b2
000201913 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b3$$ufzj
000201913 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b4$$ufzj
000201913 7001_ $$0P:(DE-Juel1)131539$$aSchmidt, A.$$b5
000201913 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2010.08.065$$gVol. 415, no. 1, p. S51 - S54$$n1$$pS51 - S54$$tJournal of nuclear materials$$v415$$x0022-3115$$y2011
000201913 8564_ $$uhttps://juser.fz-juelich.de/record/201913/files/1-s2.0-S0022311510004563-main.pdf$$yRestricted
000201913 8564_ $$uhttps://juser.fz-juelich.de/record/201913/files/1-s2.0-S0022311510004563-main.gif?subformat=icon$$xicon$$yRestricted
000201913 8564_ $$uhttps://juser.fz-juelich.de/record/201913/files/1-s2.0-S0022311510004563-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201913 8564_ $$uhttps://juser.fz-juelich.de/record/201913/files/1-s2.0-S0022311510004563-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201913 8564_ $$uhttps://juser.fz-juelich.de/record/201913/files/1-s2.0-S0022311510004563-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201913 8564_ $$uhttps://juser.fz-juelich.de/record/201913/files/1-s2.0-S0022311510004563-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201913 909CO $$ooai:juser.fz-juelich.de:201913$$pVDB
000201913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129751$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201913 9132_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000201913 9131_ $$0G:(DE-HGF)POF2-135$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-wall interactions$$x0
000201913 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201913 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201913 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201913 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201913 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201913 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000201913 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000201913 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000201913 9201_ $$0I:(DE-Juel1)N-M-20100415$$kN-M$$lHeißes Materiallabor$$x1
000201913 980__ $$ajournal
000201913 980__ $$aVDB
000201913 980__ $$aI:(DE-Juel1)IEK-2-20101013
000201913 980__ $$aI:(DE-Juel1)N-M-20100415
000201913 980__ $$aUNRESTRICTED
000201913 981__ $$aI:(DE-Juel1)IMD-1-20101013
000201913 981__ $$aI:(DE-Juel1)N-M-20100415