000201920 001__ 201920
000201920 005__ 20210129215944.0
000201920 0247_ $$2doi$$a10.1209/0295-5075/101/60002
000201920 0247_ $$2ISSN$$a0295-5075
000201920 0247_ $$2ISSN$$a1286-4854
000201920 0247_ $$2WOS$$aWOS:000317918300002
000201920 037__ $$aFZJ-2015-04210
000201920 082__ $$a530
000201920 1001_ $$0P:(DE-HGF)0$$aWang, H. J.$$b0
000201920 245__ $$aTime-delay–induced synchronization in complex networks: Exploring the dynamical mechanism
000201920 260__ $$aLes Ulis$$bEDP Sciences$$c2013
000201920 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435649811_2391
000201920 3367_ $$2DataCite$$aOutput Types/Journal article
000201920 3367_ $$00$$2EndNote$$aJournal Article
000201920 3367_ $$2BibTeX$$aARTICLE
000201920 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201920 3367_ $$2DRIVER$$aarticle
000201920 520__ $$aWe show that delayed coupling could induce or enhance stable chaotic synchronization in complex networks, where no or weak synchrony would exist for the usual instantaneous coupling. The mechanism behind this phenomenon reveals that the phase structure of the coupled chaotic oscillator plays the main role. Numerical results for Rossler and Lorenz oscillators as network nodes confirm the generality of this phenomenon. Together with our previous findings, we highlight the importance of taking the dynamical structure into account when studying or designing large-scale networks for stable synchronization.
000201920 536__ $$0G:(DE-HGF)POF2-331$$a331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)$$cPOF2-331$$fPOF II$$x0
000201920 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201920 7001_ $$0P:(DE-HGF)0$$aChen, L.$$b1
000201920 7001_ $$0P:(DE-HGF)0$$aQiu, C.$$b2
000201920 7001_ $$0P:(DE-HGF)0$$aHuang, H. B.$$b3
000201920 7001_ $$0P:(DE-Juel1)131702$$aQi, Guanxiao$$b4$$eCorresponding Author$$ufzj
000201920 773__ $$0PERI:(DE-600)1465366-7$$a10.1209/0295-5075/101/60002$$gVol. 101, no. 6, p. 60002 -$$n6$$p60002 -$$tepl$$v101$$x1286-4854$$y2013
000201920 8564_ $$uhttps://juser.fz-juelich.de/record/201920/files/0295-5075_101_6_60002.pdf$$yRestricted
000201920 8564_ $$uhttps://juser.fz-juelich.de/record/201920/files/0295-5075_101_6_60002.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201920 909CO $$ooai:juser.fz-juelich.de:201920$$pVDB
000201920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131702$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000201920 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000201920 9131_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0
000201920 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201920 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201920 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201920 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201920 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201920 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201920 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201920 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000201920 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201920 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000201920 980__ $$ajournal
000201920 980__ $$aVDB
000201920 980__ $$aI:(DE-Juel1)INM-2-20090406
000201920 980__ $$aUNRESTRICTED