000201924 001__ 201924
000201924 005__ 20210129215945.0
000201924 0247_ $$2WOS$$aWOS:000348578700228
000201924 0247_ $$2ISSN$$a1573-9538
000201924 0247_ $$2ISSN$$a1573-9546
000201924 037__ $$aFZJ-2015-04214
000201924 082__ $$a610
000201924 1001_ $$0P:(DE-Juel1)131679$$aElmenhorst, David.$$b0$$eCorresponding Author$$ufzj
000201924 1112_ $$aPurines 2014$$cBonn$$d2014-07-23 - 2014-07-27$$wGermany
000201924 245__ $$aImaging of adenosine receptors
000201924 260__ $$aDordrecht$$bSpringer Science + Business Media B.V.$$c2014
000201924 300__ $$a744-744
000201924 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1435298094_21794
000201924 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000201924 3367_ $$033$$2EndNote$$aConference Paper
000201924 3367_ $$2ORCID$$aCONFERENCE_PAPER
000201924 3367_ $$2DataCite$$aOutput Types/Conference Paper
000201924 3367_ $$2DRIVER$$aconferenceObject
000201924 3367_ $$2BibTeX$$aINPROCEEDINGS
000201924 520__ $$aOver the last decades adenosine receptor ligands, agonists as well as antagonists, have been developed. The requirements for compounds suitable for non-invasivein vivo imaging of adenosine receptors (radiopharmaceuticals, radiotracers) with positron emission tomography (PET) are in several aspects different from thosefor therapeutic drugs. This difference will be elucidated for radiotracers involved in human neurotransmission research.In humans theA1 adenosine receptor (A1AR) shows themost abundant distribution and highest concentrations in brain cortical and subcortical areas, whereas theA2Aadenosine receptor (A2AAR) can be found in selected regions like striatum, nucleus accumbens, olfactory tubercle. A2B adenosine receptors (A2BAR) and A3 adenosinereceptors (A3ARs) are expressed in low levels in the brain.Most of the imaging probes therefore target the A1AR and A2AAR. The talk will give an overview of currentlyused imaging probes and applications. The neuroreceptor imaging technique has been used for example to investigate physiological mechanisms of the sleep wakeregulation or pathophysiological conditions like cerebral ischemia, ethanol intoxication, epilepsy or Alzheimer’s disease in humans and animal models. Pharmacokineticanalysis of PET experiments allow additionally to investigate drug action in the human brain, like for example the impact of caffeine on A1AR availability.
000201924 536__ $$0G:(DE-HGF)POF2-333$$a333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)$$cPOF2-333$$fPOF II$$x0
000201924 588__ $$aDataset connected to Web of Science, Web of Science, , juser.fz-juelich.de
000201924 7001_ $$0P:(DE-Juel1)131691$$aKroll, Tina.$$b1$$ufzj
000201924 7001_ $$0P:(DE-Juel1)138474$$aMatusch, Andreas.$$b2$$ufzj
000201924 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b3$$ufzj
000201924 773__ $$0PERI:(DE-600)2172143-9$$n4$$tPurinergic signalling$$v10$$x1573-9538$$y2014
000201924 909CO $$ooai:juser.fz-juelich.de:201924$$pVDB
000201924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131679$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131691$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138474$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000201924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000201924 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000201924 9131_ $$0G:(DE-HGF)POF2-333$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vPathophysiological Mechanisms of Neurological and Psychiatric Diseases$$x0
000201924 9141_ $$y2015
000201924 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000201924 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201924 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201924 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201924 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201924 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201924 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201924 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201924 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000201924 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000201924 980__ $$acontrib
000201924 980__ $$aVDB
000201924 980__ $$ajournal
000201924 980__ $$aI:(DE-Juel1)INM-2-20090406
000201924 980__ $$aUNRESTRICTED