000201957 001__ 201957
000201957 005__ 20210129215952.0
000201957 0247_ $$2doi$$a10.1093/jxb/erv289
000201957 0247_ $$2ISSN$$a0022-0957
000201957 0247_ $$2ISSN$$a1460-2431
000201957 0247_ $$2WOS$$aWOS:000361208000012
000201957 0247_ $$2altmetric$$aaltmetric:4152575
000201957 0247_ $$2pmid$$apmid:26071535
000201957 037__ $$aFZJ-2015-04247
000201957 041__ $$aEnglish
000201957 082__ $$a580
000201957 1001_ $$0P:(DE-Juel1)161599$$aGioia, T.$$b0$$ufzj
000201957 245__ $$aImpact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization
000201957 260__ $$aOxford$$bUniv. Press$$c2015
000201957 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1440578747_27025
000201957 3367_ $$2DataCite$$aOutput Types/Journal article
000201957 3367_ $$00$$2EndNote$$aJournal Article
000201957 3367_ $$2BibTeX$$aARTICLE
000201957 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000201957 3367_ $$2DRIVER$$aarticle
000201957 520__ $$aThe process of domestication has led to dramatic morphological and physiological changes in crop species due toadaptation to cultivation and to the needs of farmers. To investigate the phenotypic architecture of shoot- and rootrelatedtraits and quantify the impact of primary and secondary domestication, we examined a collection of 36 wheatgenotypes under optimal and nitrogen-starvation conditions. These represented three taxa that correspond to key stepsin the recent evolution of tetraploid wheat (i.e. wild emmer, emmer, and durum wheat). Overall, nitrogen starvationreduced the shoot growth of all genotypes, while it induced the opposite effect on root traits, quantified using theautomated phenotyping platform GROWSCREEN-Rhizo. We observed an overall increase in all of the shoot and rootgrowth traits from wild emmer to durum wheat, while emmer was generally very similar to wild emmer but intermediatebetween these two subspecies. While the differences in phenotypic diversity due to the effects of primary domesticationwere not significant, the secondary domestication transition from emmer to durum wheat was marked by a large andsignificant decrease in the coefficient of additive genetic variation. In particular, this reduction was very strong underthe optimal condition and less intense under nitrogen starvation. Moreover, although under the optimal condition bothroot and shoot traits showed significantly reduced diversity due to secondary domestication, under nitrogen starvationthe reduced diversity was significant only for shoot traits. Overall, a considerable amount of phenotypic variation wasobserved in wild emmer and emmer, which could be exploited for the development of pre-breeding strategies.
000201957 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000201957 536__ $$0G:(EU-Grant)284443$$aEPPN - European Plant Phenotyping Network (284443)$$c284443$$fFP7-INFRASTRUCTURES-2011-1$$x1
000201957 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000201957 7001_ $$0P:(DE-Juel1)129373$$aNagel, Kerstin$$b1$$ufzj
000201957 7001_ $$0P:(DE-HGF)0$$aBeleggia, R.$$b2
000201957 7001_ $$0P:(DE-HGF)0$$aFragasso, M.$$b3
000201957 7001_ $$0P:(DE-HGF)0$$aFicco, D. B. M.$$b4
000201957 7001_ $$0P:(DE-Juel1)129379$$aPieruschka, R.$$b5$$ufzj
000201957 7001_ $$0P:(DE-HGF)0$$aDe Vita, P.$$b6
000201957 7001_ $$0P:(DE-Juel1)143649$$aFiorani, F.$$b7$$ufzj
000201957 7001_ $$0P:(DE-Juel1)165697$$aPapa, R.$$b8$$eCorresponding Author$$ufzj
000201957 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/erv289$$gp. erv289$$n18$$p5519-5530$$tThe @journal of experimental botany$$v66$$x0022-0957$$y2015
000201957 8564_ $$uhttp://jxb.oxfordjournals.org/content/early/2015/06/12/jxb.erv289.full.pdf+html
000201957 8564_ $$uhttps://juser.fz-juelich.de/record/201957/files/J.%20Exp.%20Bot.-2015-Gioia-5519-30.pdf$$yRestricted
000201957 8564_ $$uhttps://juser.fz-juelich.de/record/201957/files/J.%20Exp.%20Bot.-2015-Gioia-5519-30.gif?subformat=icon$$xicon$$yRestricted
000201957 8564_ $$uhttps://juser.fz-juelich.de/record/201957/files/J.%20Exp.%20Bot.-2015-Gioia-5519-30.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000201957 8564_ $$uhttps://juser.fz-juelich.de/record/201957/files/J.%20Exp.%20Bot.-2015-Gioia-5519-30.jpg?subformat=icon-180$$xicon-180$$yRestricted
000201957 8564_ $$uhttps://juser.fz-juelich.de/record/201957/files/J.%20Exp.%20Bot.-2015-Gioia-5519-30.jpg?subformat=icon-640$$xicon-640$$yRestricted
000201957 8564_ $$uhttps://juser.fz-juelich.de/record/201957/files/J.%20Exp.%20Bot.-2015-Gioia-5519-30.pdf?subformat=pdfa$$xpdfa$$yRestricted
000201957 909CO $$ooai:juser.fz-juelich.de:201957$$pec_fundedresources$$pVDB$$popenaire
000201957 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161599$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000201957 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129373$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000201957 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129379$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000201957 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000201957 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165697$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000201957 9130_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF2-89580$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000201957 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000201957 9141_ $$y2015
000201957 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EXP BOT : 2013
000201957 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000201957 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000201957 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000201957 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000201957 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000201957 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000201957 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000201957 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000201957 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000201957 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000201957 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EXP BOT : 2013
000201957 920__ $$lyes
000201957 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000201957 980__ $$ajournal
000201957 980__ $$aVDB
000201957 980__ $$aI:(DE-Juel1)IBG-2-20101118
000201957 980__ $$aUNRESTRICTED