000020198 001__ 20198
000020198 005__ 20240711101541.0
000020198 0247_ $$2DOI$$a10.1016/j.jpowsour.2012.01.054
000020198 0247_ $$2WOS$$aWOS:000301828300020
000020198 037__ $$aPreJuSER-20198
000020198 041__ $$aeng
000020198 082__ $$a620
000020198 084__ $$2WoS$$aElectrochemistry
000020198 084__ $$2WoS$$aEnergy & Fuels
000020198 1001_ $$0P:(DE-Juel1)VDB86736$$aNédélec, R.$$b0$$uFZJ
000020198 245__ $$aDense yttria-stabilised zirconia electrolyte layers for SOFC by reactive magnetron sputtering
000020198 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2012
000020198 300__ $$a157 - 163
000020198 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020198 3367_ $$2DataCite$$aOutput Types/Journal article
000020198 3367_ $$00$$2EndNote$$aJournal Article
000020198 3367_ $$2BibTeX$$aARTICLE
000020198 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020198 3367_ $$2DRIVER$$aarticle
000020198 440_0 $$03727$$aJournal of Power Sources$$v205$$x0378-7753
000020198 500__ $$aRecord converted from VDB: 12.11.2012
000020198 520__ $$aThe morphology of layers of fully yttria-stabilised zirconia (YSZ) deposited by reactive magnetron sputtering was studied with regard to their application as thin electrolytes for solid oxide fuel cells (SOFC). A thin layer of YSZ was deposited on top of anode substrates for SOFC. The substrate comprises the warm-pressed anode itself, which supports the complete cell, and an anode functional layer deposited by vacuum slip casting, which is in direct contact with the electrolyte. From previous experiments it is known that non-assisted reactive DC magnetron sputtering produces layers with rather high leak-rate even when depositing at high temperatures. Residual pores on the substrates' surfaces are responsible for the incomplete coverage by the thin electrolyte and are detrimental to the cell's performance. In the present paper, the effect of increasing bias power applied to the substrate is studied. A clear improvement of the layer morphology and gas-tightness can be observed with increasing bias power. SOFC single cell-tests show art improved performance with regard to standard wet-ceramic processing routes. (C) 2012 Elsevier B.V. All rights reserved.
000020198 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000020198 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000020198 588__ $$aDataset connected to Web of Science
000020198 650_7 $$2WoSType$$aJ
000020198 65320 $$2Author$$aSOFC
000020198 65320 $$2Author$$aIon-assisted PVD
000020198 65320 $$2Author$$aPhysical vapour-phase deposition
000020198 65320 $$2Author$$a8YSZ
000020198 65320 $$2Author$$aThin electrolyte layers
000020198 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, S.$$b1$$uFZJ
000020198 7001_ $$0P:(DE-Juel1)129662$$aSebold, D.$$b2$$uFZJ
000020198 7001_ $$0P:(DE-Juel1)VDB96757$$aHaanappel, V.A.C.$$b3$$uFZJ
000020198 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H.P.$$b4$$uFZJ
000020198 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b5$$uFZJ
000020198 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2012.01.054$$gVol. 205, p. 157 - 163$$p157 - 163$$q205<157 - 163$$tJournal of power sources$$v205$$x0378-7753$$y2012
000020198 8567_ $$uhttp://dx.doi.org/10.1016/j.jpowsour.2012.01.054
000020198 8564_ $$uhttps://juser.fz-juelich.de/record/20198/files/FZJ-20198_PV.pdf$$yRestricted$$zPublished final document.
000020198 909CO $$ooai:juser.fz-juelich.de:20198$$pVDB
000020198 9131_ $$0G:(DE-Juel1)FUEK402$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000020198 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000020198 9141_ $$y2012
000020198 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000020198 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000020198 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000020198 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000020198 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000020198 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000020198 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000020198 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000020198 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000020198 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000020198 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000020198 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000020198 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$gIEK$$kIEK-3$$lBrennstoffzellen$$x1
000020198 970__ $$aVDB:(DE-Juel1)135331
000020198 980__ $$aVDB
000020198 980__ $$aConvertedRecord
000020198 980__ $$ajournal
000020198 980__ $$aI:(DE-Juel1)IEK-1-20101013
000020198 980__ $$aI:(DE-Juel1)IEK-3-20101013
000020198 980__ $$aUNRESTRICTED
000020198 981__ $$aI:(DE-Juel1)ICE-2-20101013
000020198 981__ $$aI:(DE-Juel1)IMD-2-20101013
000020198 981__ $$aI:(DE-Juel1)IEK-3-20101013