000202020 001__ 202020
000202020 005__ 20240712084612.0
000202020 0247_ $$2doi$$a10.1016/j.nucengdes.2013.11.059
000202020 0247_ $$2ISSN$$a0029-5493
000202020 0247_ $$2ISSN$$a1872-759X
000202020 0247_ $$2WOS$$aWOS:000336348100057
000202020 037__ $$aFZJ-2015-04309
000202020 082__ $$a620
000202020 1001_ $$0P:(DE-Juel1)7250$$aKasselmann, Stefan$$b0$$eCorresponding Author$$ufzj
000202020 245__ $$aStatus of the development of a fully integrated code system for the simulation of high temperature reactor cores
000202020 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000202020 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435665560_2489
000202020 3367_ $$2DataCite$$aOutput Types/Journal article
000202020 3367_ $$00$$2EndNote$$aJournal Article
000202020 3367_ $$2BibTeX$$aARTICLE
000202020 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202020 3367_ $$2DRIVER$$aarticle
000202020 520__ $$aThe HTR code package (HCP) is a new code system, which couples a variety of stand-alone codes for the simulation of different aspects of HTR. HCP will allow the steady-state and transient operating conditions of a 3D reactor core to be simulated including new features such as spatially resolved fission product release calculations or production and transport of graphite dust. For this code the latest programming techniques and standards are applied. As a first step an object-oriented data model was developed which features a high level of readability because it is based on problem-specific data types like Nuclide, Reaction, ReactionHandler, CrossSectionSet, etc. Those classes help to encapsulate and therefore hide specific implementations, which are not relevant with respect to physics. HCP will make use of one consistent data library for which an automatic generation tool was developed. The new data library consists of decay information, cross sections, fission yields, scattering matrices etc. for all available nuclides (e.g. ENDF/B-VII.1). The data can be stored in different formats such as binary, ASCII or XML. The new burn up code TNT (Topological Nuclide Transmutation) applies graph theory to represent nuclide chains and to minimize the calculation effort when solving the burn up equations. New features are the use of energy-dependent fission yields or the calculation of thermal power for decay, fission and capture reactions. With STACY (source term analysis code system) the fission product release for steady state as well as accident scenarios can be simulated for each fuel batch. For a full-core release calculation several thousand fuel elements are tracked while passing through the core. This models the stochastic behavior of a pebble bed in a realistic manner. In this paper we report on the current status of the HCP and present first results, which prove the applicability of the selected approach.
000202020 536__ $$0G:(DE-HGF)POF2-141$$a141 - Safety Research for Nuclear Reactors (POF2-141)$$cPOF2-141$$fPOF II$$x0
000202020 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000202020 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202020 7001_ $$0P:(DE-Juel1)5471$$aDruska, Claudia$$b1$$ufzj
000202020 7001_ $$0P:(DE-Juel1)8468$$aHerber, Stefan$$b2
000202020 7001_ $$0P:(DE-Juel1)8612$$aJühe, Stephan$$b3
000202020 7001_ $$0P:(DE-Juel1)8711$$aKeller, Florian$$b4
000202020 7001_ $$0P:(DE-Juel1)7747$$aLambertz, Daniela$$b5$$ufzj
000202020 7001_ $$0P:(DE-Juel1)7897$$aLi, Jingjing$$b6$$ufzj
000202020 7001_ $$0P:(DE-Juel1)7385$$aScholthaus, Sarah$$b7
000202020 7001_ $$0P:(DE-Juel1)8827$$aShi, Dunfu$$b8
000202020 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, Andre$$b9$$ufzj
000202020 7001_ $$0P:(DE-Juel1)130314$$aAllelein, Hans-Josef$$b10$$ufzj
000202020 773__ $$0PERI:(DE-600)2001319-X$$a10.1016/j.nucengdes.2013.11.059$$gVol. 271, p. 341 - 347$$p341 - 347$$tNuclear engineering and design$$v271$$x0029-5493$$y2014
000202020 8564_ $$uhttps://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.pdf$$yRestricted
000202020 8564_ $$uhttps://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.gif?subformat=icon$$xicon$$yRestricted
000202020 8564_ $$uhttps://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202020 8564_ $$uhttps://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202020 8564_ $$uhttps://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202020 8564_ $$uhttps://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202020 909CO $$ooai:juser.fz-juelich.de:202020$$pVDB
000202020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7250$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5471$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7747$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000202020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7897$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000202020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000202020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130314$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000202020 9132_ $$0G:(DE-HGF)POF3-162$$1G:(DE-HGF)POF3-160$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung und Sicherheit sowie Strahlenforschung$$vReactor Safety$$x0
000202020 9131_ $$0G:(DE-HGF)POF2-141$$1G:(DE-HGF)POF2-140$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lNukleare Sicherheitsforschung$$vSafety Research for Nuclear Reactors$$x0
000202020 9141_ $$y2015
000202020 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202020 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202020 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202020 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202020 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202020 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202020 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000202020 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000202020 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000202020 980__ $$ajournal
000202020 980__ $$aVDB
000202020 980__ $$aI:(DE-Juel1)IEK-6-20101013
000202020 980__ $$aUNRESTRICTED
000202020 981__ $$aI:(DE-Juel1)IFN-2-20101013