001     202020
005     20240712084612.0
024 7 _ |a 10.1016/j.nucengdes.2013.11.059
|2 doi
024 7 _ |a 0029-5493
|2 ISSN
024 7 _ |a 1872-759X
|2 ISSN
024 7 _ |a WOS:000336348100057
|2 WOS
037 _ _ |a FZJ-2015-04309
082 _ _ |a 620
100 1 _ |a Kasselmann, Stefan
|0 P:(DE-Juel1)7250
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Status of the development of a fully integrated code system for the simulation of high temperature reactor cores
260 _ _ |a Amsterdam [u.a.]
|c 2014
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435665560_2489
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The HTR code package (HCP) is a new code system, which couples a variety of stand-alone codes for the simulation of different aspects of HTR. HCP will allow the steady-state and transient operating conditions of a 3D reactor core to be simulated including new features such as spatially resolved fission product release calculations or production and transport of graphite dust. For this code the latest programming techniques and standards are applied. As a first step an object-oriented data model was developed which features a high level of readability because it is based on problem-specific data types like Nuclide, Reaction, ReactionHandler, CrossSectionSet, etc. Those classes help to encapsulate and therefore hide specific implementations, which are not relevant with respect to physics. HCP will make use of one consistent data library for which an automatic generation tool was developed. The new data library consists of decay information, cross sections, fission yields, scattering matrices etc. for all available nuclides (e.g. ENDF/B-VII.1). The data can be stored in different formats such as binary, ASCII or XML. The new burn up code TNT (Topological Nuclide Transmutation) applies graph theory to represent nuclide chains and to minimize the calculation effort when solving the burn up equations. New features are the use of energy-dependent fission yields or the calculation of thermal power for decay, fission and capture reactions. With STACY (source term analysis code system) the fission product release for steady state as well as accident scenarios can be simulated for each fuel batch. For a full-core release calculation several thousand fuel elements are tracked while passing through the core. This models the stochastic behavior of a pebble bed in a realistic manner. In this paper we report on the current status of the HCP and present first results, which prove the applicability of the selected approach.
536 _ _ |a 141 - Safety Research for Nuclear Reactors (POF2-141)
|0 G:(DE-HGF)POF2-141
|c POF2-141
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Druska, Claudia
|0 P:(DE-Juel1)5471
|b 1
|u fzj
700 1 _ |a Herber, Stefan
|0 P:(DE-Juel1)8468
|b 2
700 1 _ |a Jühe, Stephan
|0 P:(DE-Juel1)8612
|b 3
700 1 _ |a Keller, Florian
|0 P:(DE-Juel1)8711
|b 4
700 1 _ |a Lambertz, Daniela
|0 P:(DE-Juel1)7747
|b 5
|u fzj
700 1 _ |a Li, Jingjing
|0 P:(DE-Juel1)7897
|b 6
|u fzj
700 1 _ |a Scholthaus, Sarah
|0 P:(DE-Juel1)7385
|b 7
700 1 _ |a Shi, Dunfu
|0 P:(DE-Juel1)8827
|b 8
700 1 _ |a Xhonneux, Andre
|0 P:(DE-Juel1)8457
|b 9
|u fzj
700 1 _ |a Allelein, Hans-Josef
|0 P:(DE-Juel1)130314
|b 10
|u fzj
773 _ _ |a 10.1016/j.nucengdes.2013.11.059
|g Vol. 271, p. 341 - 347
|0 PERI:(DE-600)2001319-X
|p 341 - 347
|t Nuclear engineering and design
|v 271
|y 2014
|x 0029-5493
856 4 _ |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202020
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)7250
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5471
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)7747
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)7897
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)8457
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130314
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Nukleare Entsorgung und Sicherheit sowie Strahlenforschung
|1 G:(DE-HGF)POF3-160
|0 G:(DE-HGF)POF3-162
|2 G:(DE-HGF)POF3-100
|v Reactor Safety
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Nukleare Sicherheitsforschung
|1 G:(DE-HGF)POF2-140
|0 G:(DE-HGF)POF2-141
|2 G:(DE-HGF)POF2-100
|v Safety Research for Nuclear Reactors
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21