Home > Publications database > Status of the development of a fully integrated code system for the simulation of high temperature reactor cores > print |
001 | 202020 | ||
005 | 20240712084612.0 | ||
024 | 7 | _ | |a 10.1016/j.nucengdes.2013.11.059 |2 doi |
024 | 7 | _ | |a 0029-5493 |2 ISSN |
024 | 7 | _ | |a 1872-759X |2 ISSN |
024 | 7 | _ | |a WOS:000336348100057 |2 WOS |
037 | _ | _ | |a FZJ-2015-04309 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Kasselmann, Stefan |0 P:(DE-Juel1)7250 |b 0 |e Corresponding Author |u fzj |
245 | _ | _ | |a Status of the development of a fully integrated code system for the simulation of high temperature reactor cores |
260 | _ | _ | |a Amsterdam [u.a.] |c 2014 |b Elsevier Science |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1435665560_2489 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a The HTR code package (HCP) is a new code system, which couples a variety of stand-alone codes for the simulation of different aspects of HTR. HCP will allow the steady-state and transient operating conditions of a 3D reactor core to be simulated including new features such as spatially resolved fission product release calculations or production and transport of graphite dust. For this code the latest programming techniques and standards are applied. As a first step an object-oriented data model was developed which features a high level of readability because it is based on problem-specific data types like Nuclide, Reaction, ReactionHandler, CrossSectionSet, etc. Those classes help to encapsulate and therefore hide specific implementations, which are not relevant with respect to physics. HCP will make use of one consistent data library for which an automatic generation tool was developed. The new data library consists of decay information, cross sections, fission yields, scattering matrices etc. for all available nuclides (e.g. ENDF/B-VII.1). The data can be stored in different formats such as binary, ASCII or XML. The new burn up code TNT (Topological Nuclide Transmutation) applies graph theory to represent nuclide chains and to minimize the calculation effort when solving the burn up equations. New features are the use of energy-dependent fission yields or the calculation of thermal power for decay, fission and capture reactions. With STACY (source term analysis code system) the fission product release for steady state as well as accident scenarios can be simulated for each fuel batch. For a full-core release calculation several thousand fuel elements are tracked while passing through the core. This models the stochastic behavior of a pebble bed in a realistic manner. In this paper we report on the current status of the HCP and present first results, which prove the applicability of the selected approach. |
536 | _ | _ | |a 141 - Safety Research for Nuclear Reactors (POF2-141) |0 G:(DE-HGF)POF2-141 |c POF2-141 |f POF II |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Druska, Claudia |0 P:(DE-Juel1)5471 |b 1 |u fzj |
700 | 1 | _ | |a Herber, Stefan |0 P:(DE-Juel1)8468 |b 2 |
700 | 1 | _ | |a Jühe, Stephan |0 P:(DE-Juel1)8612 |b 3 |
700 | 1 | _ | |a Keller, Florian |0 P:(DE-Juel1)8711 |b 4 |
700 | 1 | _ | |a Lambertz, Daniela |0 P:(DE-Juel1)7747 |b 5 |u fzj |
700 | 1 | _ | |a Li, Jingjing |0 P:(DE-Juel1)7897 |b 6 |u fzj |
700 | 1 | _ | |a Scholthaus, Sarah |0 P:(DE-Juel1)7385 |b 7 |
700 | 1 | _ | |a Shi, Dunfu |0 P:(DE-Juel1)8827 |b 8 |
700 | 1 | _ | |a Xhonneux, Andre |0 P:(DE-Juel1)8457 |b 9 |u fzj |
700 | 1 | _ | |a Allelein, Hans-Josef |0 P:(DE-Juel1)130314 |b 10 |u fzj |
773 | _ | _ | |a 10.1016/j.nucengdes.2013.11.059 |g Vol. 271, p. 341 - 347 |0 PERI:(DE-600)2001319-X |p 341 - 347 |t Nuclear engineering and design |v 271 |y 2014 |x 0029-5493 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202020/files/1-s2.0-S0029549313006444-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:202020 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)7250 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)5471 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)7747 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)7897 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)8457 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)130314 |
913 | 2 | _ | |a DE-HGF |b Forschungsbereich Energie |l Nukleare Entsorgung und Sicherheit sowie Strahlenforschung |1 G:(DE-HGF)POF3-160 |0 G:(DE-HGF)POF3-162 |2 G:(DE-HGF)POF3-100 |v Reactor Safety |x 0 |
913 | 1 | _ | |a DE-HGF |b Energie |l Nukleare Sicherheitsforschung |1 G:(DE-HGF)POF2-140 |0 G:(DE-HGF)POF2-141 |2 G:(DE-HGF)POF2-100 |v Safety Research for Nuclear Reactors |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-6-20101013 |k IEK-6 |l Nukleare Entsorgung und Reaktorsicherheit |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-6-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IFN-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|