000202038 001__ 202038
000202038 005__ 20240712101049.0
000202038 0247_ $$2doi$$a10.1002/2013JD021215
000202038 0247_ $$2ISSN$$a0148-0227
000202038 0247_ $$2ISSN$$a2156-2202
000202038 0247_ $$2ISSN$$a2169-897X
000202038 0247_ $$2ISSN$$a2169-8996
000202038 0247_ $$2WOS$$aWOS:000336046600053
000202038 0247_ $$2Handle$$a2128/16093
000202038 037__ $$aFZJ-2015-04327
000202038 082__ $$a550
000202038 1001_ $$0P:(DE-HGF)0$$aSahu, L. K.$$b0$$eCorresponding Author
000202038 245__ $$aSeasonal and interannual variability of tropospheric ozone over an urban site in India: A study based on MOZAIC and CCM vertical profiles over Hyderabad
000202038 260__ $$aHoboken, NJ$$bWiley$$c2014
000202038 3367_ $$2DRIVER$$aarticle
000202038 3367_ $$2DataCite$$aOutput Types/Journal article
000202038 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512381516_12592
000202038 3367_ $$2BibTeX$$aARTICLE
000202038 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202038 3367_ $$00$$2EndNote$$aJournal Article
000202038 520__ $$aThis study is based on the analysis of Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data measured over Hyderabad, India during the years 2006–2008. Tropospheric profiles of O3 show clear seasonality with high and low values during the premonsoon and monsoon seasons, respectively. Analysis of back trajectory and fire count data indicates major roles for long-range transport and biomass burning in the seasonal variation of O3. Typically, lower levels of O3 in the monsoon season were due to the flow of marine air and negligible regional biomass burning, while higher levels in other seasons were due to transport of continental air. In the upper troposphere, relatively low levels of O3 during the monsoon and postmonsoon seasons were associated with deep convection. In the free troposphere, levels of O3 also show year-to-year variability as the values in the premonsoon of 2006 were higher by about 30 ppbv compared to 2008. The year-to-year variations were mainly due to transition from El Niño (2006) to La Niña (2008). The higher and lower levels of O3 were associated with strong and weak wind shears, respectively. Typically, vertical variations of O3 were anticorrelated with the lapse rate profile. The lower O3 levels were observed in the stable layers, but higher values in the midtroposphere were caused by long-range transport. In the PBL region, the mixing ratio of O3 shows strong dependencies on meteorological parameters. The Chemistry Climate Model (CCM2) reasonably reproduced the observed profiles of O3 except for the premonsoon season.
000202038 536__ $$0G:(DE-HGF)POF2-233$$a233 - Trace gas and aerosol processes in the troposphere (POF2-233)$$cPOF2-233$$fPOF II$$x0
000202038 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202038 7001_ $$0P:(DE-HGF)0$$aSheel, Varun$$b1
000202038 7001_ $$0P:(DE-HGF)0$$aKajino, M.$$b2
000202038 7001_ $$0P:(DE-HGF)0$$aDeushi, M.$$b3
000202038 7001_ $$0P:(DE-HGF)0$$aGunthe, Sachin S.$$b4
000202038 7001_ $$0P:(DE-HGF)0$$aSinha, P. R.$$b5
000202038 7001_ $$0P:(DE-HGF)0$$aSauvage, B.$$b6
000202038 7001_ $$0P:(DE-HGF)0$$aThouret, Valérie$$b7
000202038 7001_ $$0P:(DE-Juel1)16203$$aSmit, Herman G.$$b8$$ufzj
000202038 773__ $$0PERI:(DE-600)2016800-7$$a10.1002/2013JD021215$$gVol. 119, no. 6, p. 3615 - 3641$$n6$$p3615 - 3641$$tJournal of geophysical research / Atmospheres$$v119$$x2169-897X$$y2014
000202038 8564_ $$uhttps://juser.fz-juelich.de/record/202038/files/jgrd51281.pdf$$yOpenAccess
000202038 8564_ $$uhttps://juser.fz-juelich.de/record/202038/files/jgrd51281.gif?subformat=icon$$xicon$$yOpenAccess
000202038 8564_ $$uhttps://juser.fz-juelich.de/record/202038/files/jgrd51281.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202038 8564_ $$uhttps://juser.fz-juelich.de/record/202038/files/jgrd51281.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202038 8564_ $$uhttps://juser.fz-juelich.de/record/202038/files/jgrd51281.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202038 8564_ $$uhttps://juser.fz-juelich.de/record/202038/files/jgrd51281.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202038 909CO $$ooai:juser.fz-juelich.de:202038$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000202038 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16203$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000202038 9132_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000202038 9131_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x0
000202038 9141_ $$y2015
000202038 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202038 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202038 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202038 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202038 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202038 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000202038 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202038 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202038 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202038 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202038 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202038 920__ $$lyes
000202038 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000202038 9801_ $$aFullTexts
000202038 980__ $$ajournal
000202038 980__ $$aVDB
000202038 980__ $$aUNRESTRICTED
000202038 980__ $$aI:(DE-Juel1)IEK-8-20101013
000202038 981__ $$aI:(DE-Juel1)ICE-3-20101013