000202039 001__ 202039
000202039 005__ 20240712101029.0
000202039 0247_ $$2doi$$a10.5194/acp-14-10823-2014
000202039 0247_ $$2ISSN$$a1680-7316
000202039 0247_ $$2ISSN$$a1680-7324
000202039 0247_ $$2Handle$$a2128/8925
000202039 0247_ $$2WOS$$aWOS:000344164800027
000202039 037__ $$aFZJ-2015-04328
000202039 082__ $$a550
000202039 1001_ $$0P:(DE-HGF)0$$aBonn, B.$$b0$$eCorresponding Author
000202039 245__ $$aThe link between atmospheric radicals and newly formed particles at a spruce forest site in Germany
000202039 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000202039 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435667390_745
000202039 3367_ $$2DataCite$$aOutput Types/Journal article
000202039 3367_ $$00$$2EndNote$$aJournal Article
000202039 3367_ $$2BibTeX$$aARTICLE
000202039 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202039 3367_ $$2DRIVER$$aarticle
000202039 520__ $$aIt has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulfuric acid. However, the activation process of sulfuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J3) for a variety of different conditions. Nucleation mechanisms involving only sulfuric acid tentatively captured the observed noon-time daily maximum in J3, but displayed an increasing difference to J3 measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products, in the nucleation mechanism improved the correlation between observed and simulated J3. This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilised Criegee intermediates (sCI). This novel laboratory-derived algorithm simulated the daily pattern and intensity of J3 observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during night-time. Because the RO2 lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation capacity but also for the activation process of new particle formation. This is supposed to have significant impact of atmospheric radical species on aerosol chemistry and should be taken into account when studying the impact of new particles in climate feedback cycles.
000202039 536__ $$0G:(DE-HGF)POF2-233$$a233 - Trace gas and aerosol processes in the troposphere (POF2-233)$$cPOF2-233$$fPOF II$$x0
000202039 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202039 7001_ $$0P:(DE-HGF)0$$aBourtsoukidis, E.$$b1
000202039 7001_ $$0P:(DE-HGF)0$$aSun, T. S.$$b2
000202039 7001_ $$0P:(DE-HGF)0$$aBingemer, H.$$b3
000202039 7001_ $$0P:(DE-HGF)0$$aRondo, L.$$b4
000202039 7001_ $$0P:(DE-HGF)0$$aJaved, U.$$b5
000202039 7001_ $$0P:(DE-HGF)0$$aLi, J.$$b6
000202039 7001_ $$0P:(DE-HGF)0$$aAxinte, R.$$b7
000202039 7001_ $$0P:(DE-Juel1)6775$$aLi, Xin$$b8$$ufzj
000202039 7001_ $$0P:(DE-Juel1)16306$$aBrauers, T.$$b9$$ufzj
000202039 7001_ $$0P:(DE-HGF)0$$aSonderfeld, H.$$b10
000202039 7001_ $$0P:(DE-HGF)0$$aKoppmann, R.$$b11
000202039 7001_ $$0P:(DE-HGF)0$$aSogachev, A.$$b12
000202039 7001_ $$0P:(DE-HGF)0$$aJacobi, S.$$b13
000202039 7001_ $$0P:(DE-HGF)0$$aSpracklen, D. V.$$b14
000202039 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-14-10823-2014$$gVol. 14, no. 19, p. 10823 - 10843$$n19$$p10823 - 10843$$tAtmospheric chemistry and physics$$v14$$x1680-7324$$y2014
000202039 8564_ $$uhttp://www.atmos-chem-phys.net/14/10823/2014/acp-14-10823-2014.html
000202039 8564_ $$uhttps://juser.fz-juelich.de/record/202039/files/acp-14-10823-2014.pdf$$yOpenAccess
000202039 8564_ $$uhttps://juser.fz-juelich.de/record/202039/files/acp-14-10823-2014.gif?subformat=icon$$xicon$$yOpenAccess
000202039 8564_ $$uhttps://juser.fz-juelich.de/record/202039/files/acp-14-10823-2014.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202039 8564_ $$uhttps://juser.fz-juelich.de/record/202039/files/acp-14-10823-2014.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202039 8564_ $$uhttps://juser.fz-juelich.de/record/202039/files/acp-14-10823-2014.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202039 8564_ $$uhttps://juser.fz-juelich.de/record/202039/files/acp-14-10823-2014.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202039 909CO $$ooai:juser.fz-juelich.de:202039$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000202039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6775$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000202039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16306$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000202039 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)16343$$a Uni Wuppertal$$b11
000202039 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)164220$$aExternal Institute$$b13$$kExtern
000202039 9132_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000202039 9131_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x0
000202039 9141_ $$y2015
000202039 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000202039 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202039 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202039 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000202039 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000202039 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202039 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202039 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202039 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202039 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202039 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202039 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202039 920__ $$lyes
000202039 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000202039 9801_ $$aFullTexts
000202039 980__ $$ajournal
000202039 980__ $$aVDB
000202039 980__ $$aFullTexts
000202039 980__ $$aUNRESTRICTED
000202039 980__ $$aI:(DE-Juel1)IEK-8-20101013
000202039 981__ $$aI:(DE-Juel1)ICE-3-20101013