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Abstract. HCHO and CHOCHO are important trace gases in

the atmosphere, serving as tracers of VOC oxidations. In the

past decade, high concentrations of HCHO and CHOCHO

have been observed for the Pearl River Delta (PRD) region in

southern China. In this study, we performed box model sim-

ulations of HCHO and CHOCHO at a semi-rural site in the

PRD, focusing on understanding their sources and sinks and

factors influencing the CHOCHO to HCHO ratio (RGF). The

model was constrained by the simultaneous measurements of

trace gases and radicals. Isoprene oxidation by OH radicals

is the major pathway forming HCHO, followed by degra-

dations of alkenes, aromatics, and alkanes. The production

of CHOCHO is dominated by isoprene and aromatic degra-

dation; contributions from other NMHCs are of minor im-

portance. Compared to the measurement results, the model

predicts significant higher HCHO and CHOCHO concentra-

tions. Sensitivity studies suggest that fresh emissions of pre-

cursor VOCs, uptake of HCHO and CHOCHO by aerosols,

fast vertical transport, and uncertainties in the treatment of

dry deposition all have the potential to contribute signifi-

cantly to this discrepancy. Our study indicates that, in ad-

dition to chemical considerations (i.e., VOC composition,

OH and NOx levels), atmospheric physical processes (e.g.,

transport, dilution, deposition) make it difficult to use the

CHOCHO to HCHO ratio as an indicator for the origin of

air mass composition.

1 Introduction

The degradation of directly emitted volatile organic com-

pounds (VOCs) results in the formation of ozone (O3)

and secondary organic aerosols (SOAs) in the troposphere

(Finlayson-Pitts and Pitts, 2000). This process consists of

the oxidation of VOCs by hydroxyl radical (OH), O3, and

nitrate radical (NO3). Detailed understanding of the VOCs’

degradation mechanism is challenged by the co-existence of

vast variety of VOC species in the atmosphere. However,

investigations on ubiquitous oxidation intermediates, e.g.,

formaldehyde (HCHO) and glyoxal (CHOCHO), can help

us to test and improve the current knowledge of the VOCs’

sources and degradation pathways.

HCHO is the most abundant carbonyl compound in the

atmosphere. Maximum HCHO concentrations can reach

100 ppb in polluted areas whereas sub-ppb levels are found

in remote areas (Finlayson-Pitts and Pitts, 2000). Most of

HCHO is produced during the oxidation of organic com-

pounds (Fortems-Cheiney et al., 2012). While methane

(CH4) oxidation by OH radicals is the major source of

HCHO in remote areas, the HCHO production in regions

(e.g., forest, urban area) with elevated non-methane hydro-

carbons (NMHCs) (i.e., alkanes, alkenes, aromatics, iso-

prene, and terpenes) is dominated by their degradation. Di-

rect emissions of HCHO originate mainly from fossil fuel

combustion (Schauer et al., 1999, 2002), biomass burning

(Lee et al., 1997), and vegetation (DiGangi et al., 2011), but

are usually of minor importance (Parrish et al., 2012). The

known removal pathways of HCHO in the atmosphere are
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reaction with OH, photolysis, and dry / wet deposition. Het-

erogeneous uptake by cloud droplets and aerosols is spec-

ulated to be an additional sink of HCHO, which could con-

tribute to the HCHO destruction (Zhou et al., 1996; Tie et al.,

2001; Fried et al., 2003a). However, the existence of this pro-

cess in the lower troposphere is still under discussion. Labo-

ratory experiments indicate reactive loss of HCHO can hap-

pen on surfaces of H2SO4 aerosols (Jayne et al., 1996), min-

eral dust aerosols (Sassine et al., 2010), and organic aerosols

(Li et al., 2011). Field observations by Wang et al. (2010)

suggest an uptake of HCHO by aerosols in the presence

of amines (or ammonia) and carbonyl compounds. HCHO

oligomerization is also proposed to contribute to the par-

titioning of gaseous HCHO to aerosol phase (Toda et al.,

2014). But, during a chamber study, Kroll et al. (2005) did

not find any growth of both neutral ((NH4)2SO4) and acidic

(NH4HSO4) aerosols in the presence of gaseous HCHO, sug-

gesting that the uptake of HCHO by aerosols is unlikely tak-

ing place. Although numerical simulations of HCHO, either

by multi-dimensional models or box models, can in some

cases reproduce HCHO observations (Wagner et al., 2001;

Fried et al., 2003b; MacDonald et al., 2012), significant dis-

crepancies between modeled and measured HCHO concen-

tration have been frequently found (Choi et al., 2010; Fried

et al., 2011, and references therein). The model underestima-

tion can arise from the following: deviation from the steady-

state assumption (Fried et al., 2003a), direct emissions and

their transport (Fried et al., 2011), missing consideration of

HCHO production from unmeasured precursors (Kormann

et al., 2003; Choi et al., 2010), etc. If the steady-state as-

sumption is disturbed, e.g., in the vicinity of fresh emissions,

the model can also overpredict the measured HCHO concen-

tration (Fried et al., 2011).

CHOCHO is the smallest dicarbonyl compound in the at-

mosphere. Ambient concentration of CHOCHO ranges from

tens of ppt in remote and rural areas to ≈1 ppb in heavy pol-

luted urban regions (e.g., Volkamer et al., 2007; Washen-

felder et al., 2011; DiGangi et al., 2012). Compared to

HCHO, CHOCHO has nearly no primary sources except

biomass burning and biofuel combustion. Globally, isoprene

and ethyne are the major precursors of CHOCHO (Fu et al.,

2008). While local CHOCHO production is dominated by

aromatics degradation in urban or sub-urban areas (Volkamer

et al., 2007; Washenfelder et al., 2011), significant contribu-

tions from 2-methyl-3-buten-2-ol (MBO) and isoprene oxi-

dation are identified for rural areas (Huisman et al., 2011).

Removal of gaseous CHOCHO is driven by reaction with

OH, photolysis, deposition, and loss on aerosol surfaces (Fu

et al., 2008). By comparing CHOCHO column densities de-

rived from a global model simulation to satellite observa-

tions, Myriokefalitakis et al. (2008) and Stavrakou et al.

(2009) speculate of a missing global source of CHOCHO.

Similar study performed recently by Liu et al. (2012) sug-

gests that the missing CHOCHO sources in China is most

likely due to the underestimation of aromatics in the VOC

emission inventory. As first indicated by Volkamer et al.

(2007), if loss of CHOCHO on aerosol surfaces is not taken

into account, models can substantially overestimate mea-

sured CHOCHO concentrations. Laboratory studies found

that uptake of CHOCHO by aerosols is mainly through poly-

merization process and is related with the acidity and the

ionic strength within the aqueous phase of aerosols (Jang and

Kamens, 2001; Liggio et al., 2005; Kroll et al., 2005). Once

CHOCHO is taken up by aerosols, it can contribute to the for-

mation of secondary organic aerosols (Volkamer et al., 2007;

Tan et al., 2009; Washenfelder et al., 2011).

Given that HCHO and CHOCHO have similar sinks but

different sources, the CHOCHO to HCHO ratio (RGF) has

been proposed to be a tracer of changes of VOC mixture

in the atmosphere. Based on satellite observations, Vrek-

oussis et al. (2010) conclude that regions with RGF lower

than 0.045 are under influence of anthropogenic emissions,

whereas RGF higher than 0.045 often indicates that VOC

emissions mostly originate from biogenic sources. Average

RGF up to 0.2–0.4 were observed by MacDonald et al. (2012)

in an Asian tropic forest. However, after analyzing the mea-

sured RGF and relevant trace gases at a rural site, DiGangi

et al. (2012) found that higherRGF corresponded to increased

anthropogenic impact on local photochemistry.

The Pearl River Delta (PRD) region located in south-

ern China has been identified by satellite observations as

the region with high levels of HCHO and CHOCHO (Wit-

trock et al., 2006; Vrekoussis et al., 2010). Yet simultane-

ous ground-based measurements of HCHO and CHOCHO

in this region are quite limited. During the PRIDE-PRD2006

campaign, which was dedicated to the understanding of the

formation mechanism of O3 and SOA in this heavy pol-

luted region, we performed 1 month of continuous MAX-

DOAS observations for HCHO and CHOCHO at a semi-

rural site in the PRD (Li et al., 2013). The measured HCHO

and CHOCHO concentrations as well as RGF were as high

as those obtained in other urban environments. Simultaneous

measurements of HOX (=OH+HO2) radicals, trace gases,

and aerosols suggest highly active photochemistry under the

influence of both anthropogenic and biogenic emissions (Lou

et al., 2010; Hu et al., 2012; Lu et al., 2012). In this paper,

we will focus on investigating the production and destruc-

tion pathways of HCHO and CHOCHO during the PRIDE-

PRD2006 campaign, and try to understand the change ofRGF
with the change of air mass compositions.

2 Approach

2.1 Field measurements

The PRIDE-PRD2006 field campaign took place in July

2006 in the Pearl River Delta (PRD) region in southern

China within the framework of the “Program of Regional

Integrated Experiments of Air Quality over the Pearl River
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Delta” (PRIDE-PRD2006). Field measurements of HOX rad-

icals, trace gases, aerosols, and meteorological parameters

were performed at a semi-rural site called “Back Garden”

(BG, 23.50◦ N, 113.03◦ E), which is located at the north-

ern edge of PRD. While big cities (i.e., Zhaoqing, Foshan,

Guangzhou, and Dongguan) are located tens of kilometers

south of the BG site, to the north of the BG site are small

towns close to mountain areas. These mountain areas are typ-

ically covered by evergreen broad-leaf forest. The BG site

is next to a water reservoir and is surrounded by farmland

(peanuts, lychees, trees, small forests).

Concentrations of HCHO and CHOCHO were retrieved

from MAX-DOAS scattered sunlight measurements at six

elevation angles. Since the concentration retrieval has been

described in detail in Li et al. (2013), only a brief outline

follows. During the retrieval, HCHO and CHOCHO are as-

sumed to be well-mixed in a layer with height H . The ver-

tical column density (VCD) and H are retrieved by compar-

ing measured differential slant column densities (DSCDs) to

those simulated by a radiative transfer model (RTM). Using

the retrieved VCDs and H , mean mixing ratios of HCHO

and CHOCHO in the well-mixed layer were calculated. In

order to exclude the influence of clouds on the concentra-

tion retrieval, we only consider observations during cloud-

free days. The errors of the retrieved HCHO and CHOCHO

mixing ratios consist of statistical errors which arise mainly

from the uncertainty of the measured DSCDs, and systematic

errors which originate from the uncertainty of the RTM input

parameters (e.g., aerosol optical depth, aerosol single scat-

tering albedo, aerosol asymmetry factor under the Henyey–

Greenstein approximation) and of the DSCD simulation. The

systematic error is estimated to be around 35%.

The MAX-DOAS measurements were performed in paral-

lel with ground-based in situ measurements of CO, CH4, C3–

C12 NMHCs, NOx (=NO+NO2), O3, aerosol physical and

chemical properties, photolysis frequencies, relative humid-

ity, and pressure on top of a hotel building (10m a.g.l.). Si-

multaneously, measurements of HOx radicals, HONO, tem-

perature, and 3d-wind were performed on top of two stacked

sea containers around 20m away from the hotel building.

Details of these measurements were described in separate

papers (Lu et al., 2012, and references therein). Instrumen-

tation, time resolution, and accuracy for parameters used in

this study are listed in Supplement Table S1.

2.2 Model description

Concentrations of HCHO and CHOCHO were calculated

by a zero-dimensional box model using the Master Chem-

ical Mechanism (MCM) Version 3.2 (http://mcm.leeds.ac.

uk/MCM/). The model includes the full MCM chemistry

for all measured NMHCs and their oxidation products. The

model calculations were constrained to measurements of

OH, NO, NO2, HONO, O3, CO, CH4, C3–C12 NMHCs,

photolysis frequencies, relative humidity, temperature, and

pressure. Concentrations of ethane, ethene, and ethyne were

fixed to 1.5 ppb, 3 ppb, and 1.7 ppb, respectively, estimated

from few canister samples. H2 mixing ratio was assumed to

be 550 ppb. An additional loss process with a lifetime (τD)

of 24 h was assumed for all calculated species. This lifetime

corresponds to a dry deposition velocity of 1.2 cm s−1 and a

well-mixed boundary layer height of about 1 km. The model

was operated in a time-dependent mode for the entire cam-

paign period (5–25 July), with 30min time resolution and

a 2-day spin-up time. For periods when measured NMHCs

data were not available, values were taken from the campaign

mean diurnal variation. With regard to missing OH values,

they are estimated from the measured photolysis frequency

of O3 (JO1D) using the empirical formula described by Lu

et al. (2012). The model run with the above settings repre-

sents the current understanding on the HCHO and CHOCHO

chemistry at the BG site, based on available precursor mea-

surements. This base case scenario is called M0 in the text

and figures. In order to investigate to which extent the model

can reproduce the HCHO and CHOCHO measurements, dif-

ferent model scenarios were setup by including additional

mechanisms in M0. Table 1 gives an overview of the em-

ployed model scenarios. In this study, we only focus on those

6 days when HCHO, CHOCHO, NMHCs, and OH measure-

ments were available, i.e., 12–13, 20–21, and 24–25 July.

2.3 Model uncertainty

The uncertainty of the model simulation of HCHO and

CHOCHO can arise from the uncertainty of (1) measured

trace gas concentrations, (2) measured meteorological pa-

rameters, i.e., photolysis frequencies J , temperature T , and

pressure P , (3) reaction rate constants k used in the model,

and (4) the lifetime τD for dry deposition. Using the same

uncertainty factors listed in Table S7 in Lu et al. (2012), we

run the model base case (M0) for n times (n equals to the

number of parameters been considered). During each model

run, the value of the considered parameter is multiplied by

its uncertainty factor. The model uncertainty is estimated by

error propagation from the errors of all considered parame-

ters. Gaussian error propagation was applied within each of

the first three groups. The total model errors were then calcu-

lated conservatively by linear addition of the errors from all

four groups. The mean diurnal variation of the uncertainty

of the modeled HCHO and CHOCHO by the model base

case is shown in Fig. S2. On average, modeled HCHO and

CHOCHO concentrations in the model base case had an un-

certainty of around 55%.

3 Results

3.1 Measurements overview

The entire PRIDE-PRD campaign was characterized by

tropical conditions with high temperature (28–36 ◦C), high

www.atmos-chem-phys.net/14/12291/2014/ Atmos. Chem. Phys., 14, 12291–12305, 2014
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Table 1.Model scenarios used in the sensitivity study of HCHO and CHOCHO simulation during the PRIDE-PRD2006 campaign.

Simulation Mechanisms Purpose

M0 MCM v3.2 with τD = 24 h Base run

M1 asM0, but (1) change τD to 3 h for the time period of 06:00–

19:00 in 13, 24, and 25 July, (2) decrease isoprene concen-

tration to 52% of the measured value for the period of 8:00–

16:00, and (3) include measured PANs as model constraints

Influence of source terms

M2 as M1, but replace τD of HCHO and CHOCHO by τdepo. =
vdepo.
BLH . vdepo. is set to 1 cm s

−1 and 0.3 cm s−1 for HCHO

and CHOCHO, respectively.

Influence of dry deposition

M3 as M2, but add removal of all species by vertical dilution for

the period of 06:00–10:00, with rate constant of 0.41 h−1
Influence of vertical dilution

M4 as M3, but include uptake of HCHO and CHOCHO by

aerosols, i.e., dC
dt

= −
γ×Saw×v×C

4

∗
, with an uptake coef-

ficient γ of 10−3

Influence of heterogeneous uptake

∗ C, v, and γ are the gas phase concentration, mean molecular velocity, and uptake coefficient, respectively. Saw is the RH corrected aerosol surface

concentration.

humidity (60–95% RH), and high solar radiation (indicated

by noontime JNO2 of (5–10)× 10
−3 s−1) (Li et al., 2012).

These meteorological conditions, together with the prevail-

ing emissions of air pollutants, are in favor of the high photo-

chemical reactivity in the PRD region, which can be reflected

by the measured high OH concentrations (noontime value of

1.5× 107 cm−3) and HOx turnover rate (3× 108 cm−3 s−1

around noon) (Hofzumahaus et al., 2009). For the 6 cloud-

free days in this study, Fig. 1 shows the time series of mea-

sured wind speed, wind direction, OH reactivities of C2–C12

NMHC (kNMHCOH ), OH concentrations, aerosol (PM10) surface

concentrations, aerosol (PM1) compositions, and HCHO and

CHOCHO concentrations. The wind speeds were generally

below 3m s−1. According to the wind direction, air masses

arriving at the BG site were mainly from two directions, i.e.,

south on 20 and 21 July north on 13, 24, and 25 July. On

12 July, the wind was from north in the first night, and be-

came south during daytime, and changed back to north after

sunset. Peak values of kNMHCOH were around 20 s−1 and nor-

mally occurred at night. Compared to southern wind days,

elevated kNMHCOH with average values of 5.6–6.7 s−1 were ob-

served in the period of 09:00–18:00 in northern wind days,

which was mainly attributed to the higher isoprene concen-

trations. This is consistent with the fact that north of BG site

is close to forest areas and air masses from north are therefore

influenced by biogenic emissions. However, average OH re-

activities of anthropogenic NMHC for the same period were

nearly the same in the 6 days, e.g., kAlkeneOH ≈ 1.2 s−1, regard-

less of the origin of air masses. OH concentrations also do

not show big difference in the 6 days, with peak values of

1.5× 107 cm−3 around noon and values of 0–1× 106 cm−3

during night. The aerosol (PM1) composition measurements

found that almost half of the sub-micron aerosol mass con-

sisted of organics, and the the next most found substance was

sulfate. On 24 and 25 July when strong combustion events

happened in the surrounding areas, the aerosol mass and sur-

face concentrations were significantly higher than in other

days. The occurrence of the combustion events can be in-

dicated by the increase of Cl− concentration in PM1 (Hu

et al., 2012). This Cl− increase is identified in the early

morning of 13, 24, and 25 July and around mid-night of 25

July. Increase of kAlkeneOH was also observed in the combus-

tion periods. In the 6 cloud-free days, the measured aver-

age concentrations of HCHO and CHOCHO were 7.3 ppb

and 0.37 ppb, respectively. Elevated HCHO and CHOCHO

concentrations were observed during periods when combus-

tion events were prevailing. Diurnal variability of HCHO and

CHOCHO was not very prominent. After excluding the pe-

riods influenced by combustion events, a slight increase of

HCHO concentrations can be found from early morning to

12:00, whereas CHOCHO concentrations are almost stable

at around 0.3 ppb.

3.2 HCHO and CHOCHO simulation by the model

base case

The simulated HCHO and CHOCHO concentrations from

the model base case (M0) are shown in Fig. 2. Neither the ob-

served diurnal variation nor the concentration can be well re-

produced by the model. The model predicts HCHO maxima

occurring at around 09:00 with concentrations of 30–40 ppb,

followed by decrease of HCHO concentration to 10–25 ppb

from late morning to afternoon. In the afternoon, the simu-

lated HCHO are separated into two groups; higher calculated

concentrations are found when the wind is coming from the

north of the BG site. This phenomenon also exists for the

modeled CHOCHO. In general, the model base case over-

predicts HCHO and CHOCHO concentrations by factors of

2–6. While the measurements did not find prominent diurnal

variation of CHOCHO/HCHO ratios (RGF), the model shows

Atmos. Chem. Phys., 14, 12291–12305, 2014 www.atmos-chem-phys.net/14/12291/2014/
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Figure 1. Time series of wind speed (WS), wind direction (WD), OH reactivity of measured C3–C12 NMHCs (kNMHC
OH

), OH, aerosol

(PM10) surface concentration (Saw, i.e., Sa corrected for hygroscopic growth), aerosol (PM1) compositions, HCHO, and CHOCHO for the

6 cloud-free days during the PRIDE-PRD2006 campaign. Saw is the RH corrected aerosol surface concentration, i.e., Saw = Sa× f (RH) =

Sa× (1+ a × (RH)b). The empirical factors a and b used to estimate f (RH) were set to 2.06 and 3.6 as described by Liu et al. (2008).

www.atmos-chem-phys.net/14/12291/2014/ Atmos. Chem. Phys., 14, 12291–12305, 2014
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Figure 2. Measured and modeled HCHO, CHOCHO, and CHOCHO/HCHO ratios (RGF) for the 6 cloud-free days during the PRIDE-

PRD2006 campaign. The modeled values are from the model base case (M0). The error bar refers to the 1σ statistic error of the measurements.

a decrease of RGF from morning to noon and stable RGF val-

ues in the afternoon (Fig. 2). Compared to the discrepancy

for the HCHO and CHOCHO concentrations, the RGF cal-

culated by the model (0.075± 0.024) is only slightly higher

than that by the measurements (0.059± 0.024).

The contribution of different measured NMHCs to the pro-

duction of HCHO and CHOCHO in the model base case is

shown in Fig. 3. On average, isoprene oxidation contributes

most to the HCHO production (43%), followed by the oxida-

tion of alkenes (29%), aromatics (15%), and alkanes (13%).

For CHOCHO, half of its production is due to isoprene ox-

idation, and the other half is dominated by aromatics oxi-

dation. The contributions of alkanes, alkenes, and ethyne to

the total CHOCHO production are in total less than 10%.

The top-10 precursor NMHCs of HCHO and CHOCHO in

terms of their production rate are listed in Table 2. Com-

pared to similar studies (e.g., Volkamer et al., 2010; Huis-

man et al., 2011; Washenfelder et al., 2011; MacDonald

et al., 2012; Parrish et al., 2012), anthropogenic and biogenic

sources contribute almost equally to the chemical formation

of HCHO and CHOCHO at the BG site. However, produc-

tion of HCHO and CHOCHO from anthropogenic precursors

is larger than from isoprene before noon; in the afternoon, the

contribution of isoprene to HCHO and CHOCHO production

becomes higher than from anthropogenic NMHCs. This diur-

nal variation is the result of the change of air mass composi-

tion, i.e., from anthropogenically to biogenically dominated.

The transition of air mass composition during daytime at the

BG site has also been illustrated by Lu et al. (2012) during

the analysis of the HOx budget.

Maximum production of HCHO and CHOCHO in the

model always occurs at around noon, coinciding with the

peak of OH concentrations. We investigated the production

of HCHO and CHOCHO from the oxidation of NMHCs by

different oxidants (i.e., OH, O3, and NO3). In general, OH

initiated oxidation of NMHCs accounts for most of the local

production rate of HCHO and CHOCHO (> 95%) through-

out the day; ozonolysis and oxidation by NO3 are of minor

importance. Compared to HCHO, we did not find any contri-

bution of ozonolysis of alkenes to the CHOCHO formation.

With regard to the oxidation of NMHCs by NO3, its con-

tribution to the CHOCHO production is larger than to the

HCHO production. The nighttime production of HCHO and

CHOCHO from OH initiated oxidation of NMHCs results in

the maximum concentration of HCHO and CHOCHO occur-

ring in early morning hours. Without existence of OH during

night, the lifetime of HCHO and CHOCHO in the model is

determined by dry deposition (i.e., τD = 24 h), and the pro-

duction of HCHO and CHOCHO fromO3 and NO3 reactions

is quite small. Therefore, modeled HCHO and CHOCHO

concentrations during night are determined mainly by the

concentrations the day before. In a model run with nighttime

OH concentration fixed to zero, compared to the model base

case results, HCHO and CHOCHO show much lower con-

centrations during night and reach their peak concentration

at a later time (≈2 h) (Fig. S3).

In the model base case, the destruction of HCHO and

CHOCHO can be expressed as the sum of first order reac-

tion rates of reaction with OH, photolysis, and dry deposi-

tion, i.e., kHCHOd and kCHOCHOd . It is found that reaction with

Atmos. Chem. Phys., 14, 12291–12305, 2014 www.atmos-chem-phys.net/14/12291/2014/
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Table 2. Top-10 precursor NMHCs of HCHO and CHOCHO for the 6 cloud-free days during the PRIDE-PRD2006 campaign.

NMHCs PHCHO ppb h
−1 % NMHCs PCHOCHO ppb h

−1 %

Isoprene 3.85 43.2 Isoprene 0.37 51.5

Propene 0.97 12.8 Toluene 0.17 22.0

Ethene 0.67 8.2 Ethylbenzene 0.04 5.2

Stryrene 0.24 6.1 m-Xylene 0.04 5.1

Methane 0.30 4.2 Ethene 0.03 4.2

m-Xylene 0.33 3.2 Benzene 0.03 4.0

1-Butene 0.17 2.5 o-Xylene 0.02 2.8

trans-2-Butene 0.18 2.2 Ethyne 0.02 2.4

Toluene 0.21 1.9 1,2,4-Trimethylbenzene 0.01 1.3

cis-2-Butene 0.15 1.7 o-Ehtylbenzene 0.004 0.5

Table 3. Relative changes of HCHO and CHOCHO mixing ra-

tio and RGF under different model simulations (Table 1) for the

PRIDE-PRD2006 campaign. When the model scenario is changing

from Mi to Mj (i,j ∈ [0,4]), the relative change in percentage is

calculated as %= 100× (Mj − Mi)/Mi .

Model Time period Relative change in %

HCHO CHOCHO RGF

M0→M1 06:00–18:00 −49 −37 22

06:00–10:00 −41 −22 31

10:00–18:00 −53 −44 18

M1→M2 06:00–18:00 −16 −7 13

06:00–10:00 −34 −16 30

10:00–18:00 −7 −3 4

M2→M3 06:00–18:00 −25 −30 −8

06:00–10:00 −36 −40 −7

10:00–18:00 −19 −26 −9

M3→M4 06:00–18:00 −49 −45 4

06:00–10:00 −66 −71 −14

10:00–18:00 −40 −32 13

M0→M4 06:00–18:00 −84 −79 30

06:00–10:00 −92 −89 38

10:00–18:00 −80 −74 26

OH and photolysis are responsible for 90% of the HCHO and

CHOCHO removal during daytime. During night, HCHO

and CHOCHO are removed mainly by dry deposition (60%);

the observation of nighttime OH with concentrations of

around 106 cm−3 accounts for the rest. The lifetime of

HCHO (reciprocal of kHCHOd ) is more than 10 h during night

and decreases to around 1.3 h at noon. CHOCHO has a simi-

lar lifetime as HCHO during the campaign.

4 Discussion

4.1 Reconciliation between the modeled and the

measured HCHO and CHOCHO

Compared to the model base case results, our measurements

at the BG site show much lower concentrations of HCHO

and CHOCHO which can not be explained by the uncertain-

ties of model and measurements. Moreover, observed con-

centrations in the afternoon hours do not separate into differ-

ent groups. To identify the explanation for these discrepan-

cies, we performed a number of sensitivity model runs (Ta-

bles 1 and S2). Given that direct emissions of HCHO and

CHOCHO are not considered in the model, periods which

are under the influence of local emissions (i.e., early morn-

ing of 13, 24, and 25 July) are excluded from the analysis in

this section.

The simulated HCHO and CHOCHO concentrations in

the model are determined by their production and destruc-

tion processes. The employed box model could inherently

overestimate the yield of HCHO and CHOCHO in the oxida-

tion of different NMHCs. In the model base case, isoprene,

alkenes and aromatics are the major precursors of HCHO and

CHOCHO (Fig. 3). Firstly, when strong emission sources of

these NMHCs exist in the nearby area, the model might not

be in steady state resulting in an overestimation of secondary

products. Secondly, HCHO and CHOCHO concentrations

derived from MAX-DOAS measurements represent the av-

erage value over a certain horizontal and vertical space. Dur-

ing the 6 cloud-free days, as estimated from theMAX-DOAS

measured boundary layer height (BLH) and the visibility in-

side the boundary layer, the horizontal and vertical extension

of the observation volume were both within≈2 km (Li et al.,

2010). If the air mass in this volume was not well mixed, dif-

ferent HCHO and CHOCHO production rates compared to

the rates calculated from the locally measured OH, NMHCs,

etc. would be the consequence. Since HCHO and CHOCHO

are mainly coming from the reaction of OH with NMHCs,

the above effects can be tested through the sensitivity of the
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Figure 3. Production of HCHO and CHOCHO from different NMHCs precursors in the model base case (M0) for the 6 cloud-free days

during the PRIDE-PRD2006 campaign.

modeled HCHO and CHOCHO on both (1) different τD val-

ues and (2) different OH and NMHC concentrations.

The parameter τD can be used as a scale of the generic

removal of species included in the model. The shorter the

τD , the faster the removal, resulting in less reaction time

1t (i.e., similar to the photochemical age as used by Fried

et al. (2011)) and less oxidation products of primary emitted

NMHCs. As described by Lou et al. (2010), oxidation prod-

uct of the measured NMHCs account for more than 50% of

the measured total OH reactivity (kOH) at the BG site. There-

fore, once τD deviates from the real value, modeled kOH will

become different than measured kOH. While τD = 24 h, good

agreement between modeled and measured kOH is found in

most periods during the campaign. However, on 13, 24, and

25 July when strong isoprene emission existed at the north

of the BG site, the value of τD during daytime needs to be

reduced to 3 h to let the modeled kOH match the measured

kOH (Fig. S4), indicating the shorter photochemical age of

the measured air mass in these than in the other time peri-

ods. It is most likely that the air mass with freshly emitted

isoprene was not photochemically degraded when it was de-

tected. Decrease of τD from 24 h to 3 h results in an aver-

age decrease of modeled daytime (06:00–18:00) HCHO and

CHOCHO concentrations by 31% of the values in the model

base case (Fig. S4).

Decrease of OH concentration by 20% can result in a max-

imum decrease of modeled HCHO and CHOCHO concentra-

tion by 16% and 20%, respectively. The reconciliation be-

tween modeled and measured HCHO (CHOCHO) concen-

tration would require OH concentration to be decreased to

< 30% of the measured value (Fig. S3). Similar sensitivity

results are found for the NMHC concentrations (Fig. S5).

Within ≈2 km along the MAX-DOAS viewing direction, the

land is covered homogeneously by trees. It is unlikely that

OH or NMHC concentrations differ by a factor of 2–3 from

the local measurements. However, it is possible that some

short-lived NMHCs have strong vertical gradients due to ver-

tical mixing. At around noon, the typical mixing time for

a species in a well developed convective boundary layer is

about 15min (c.f. Stull, 1988). Given the observed noon-

time OH concentration of 1.5× 107 cm−3, this mixing time

is longer than the lifetime of isoprene (≈ 10min) but is much

shorter than the lifetime of aromatics and other alkenes at the

BG site. Therefore, it has to be expected that isoprene emit-

ted at ground level would not be well-mixed in the boundary

layer within its lifetime. Assuming a vertical exponential de-

cay of the isoprene concentration in the boundary layer and

using the measured noontime BLH of around 2 km, the ef-

fective average isoprene concentration in the boundary layer

is estimated to be only 52% of the measured value at ground

(i.e., the value used in the model base case). For the time

period when convective mixing is strong, i.e., 08:00–16:00,

we reduced the isoprene concentration in the model to 52%

of the measured value. Compared to the model base case,

this change results in an average decrease of modeled HCHO

and CHOCHO concentration by 15% for this time period

(Fig. S5). The decrease is larger (up to 35%) for days when

the BG site was influenced by strong isoprene emissions (i.e.,

13, 24, and 25 July).

Together with the formation of HCHO and CHOCHO,

hydroperoxides (e.g., H2O2, CH3OOH), and peroxyacyl ni-

trates (PANs) are produced in the oxidation of NMHCs. So,

using these measurement results as additional constraints in

the model, the prediction of NMHC oxidation processes can

be improved (Kormann et al., 2003). It is found that the

model run with measured H2O2 and CH3OOH gives nearly

the same HCHO and CHOCHO concentrations as in the

model base case (Fig. S6). Including measured PANs in the

model can only lead to a maximum reduction of modeled

HCHO concentration by 30% (Fig. S7). Modeled HCHO

and CHOCHO seem not to be sensitive to the change of hy-

droperoxide and PAN abundances.
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Figure 4. Sensitivity analysis of HCHO and CHOCHO simulation for the 6 cloud-free days during the PRIDE-PRD2006 campaign. Dates

color coded in red are the days which were influenced by local combustion events. The blue dots are the measured concentrations with error

bars indicating the 1σ statistic error of the measurements. Symbols with color black, orange, green, gray, and red represent the modeled

concentrations by model base case (M0), and M1–M4, respectively. Detailed model settings are described in Table 1 in the text.

By using modified τD values and isoprene concentrations

in the model, and by including PAN measurements as addi-

tional model constraints (model scenario M1), the modeled

HCHO (CHOCHO) concentrations during daytime (06:00–

18:00) decrease by 67% (60%) of the values in the model

base case for 13, 24, and 25 July and by 31% (13%) for 12,

20, and 21 July. Given the uncertainties of model and mea-

surements, the model results agree with the measurements of

13, 24, and 25 July but are still twice as high as the measured

values for 12, 20, and 21 July (Fig. 4). Therefore, the uncer-

tainties of the production terms of HCHO and CHOCHO in

the model can only partly explain the discrepancy between

modeled and measured concentrations. As a consequence,

HCHO and CHOCHO sink terms are most likely underes-

timated by the model.

Missing HCHO and CHOCHO sinks can originate either

from the range of the existing HCHO and CHOCHO destruc-

tion terms in the model (i.e., reaction with OH, photolysis,

and dry deposition), or from horizontal advection, vertical

dilution, or loss on aerosol surfaces which are not considered

in the model.

We showed above that the sensitivity of modeled HCHO

and CHOCHO on the change of OH concentration can not

explain the overestimation of HCHO and CHOCHO concen-

tration. Since all days mentioned in this paper showed clear-

sky conditions, the photolysis frequency measurements were

representative enough for the entire MAX-DOAS observa-

tion volume. Given that the photolysis frequency measure-

ments have an accuracy of 10%, they can only have a minor

influence on the overestimation.

Dry deposition of trace gases was included in the model by

a constant lifetime τD = 24 h, which corresponds to a depo-

sition velocity of 1.6 cm s−1 when taking the average mea-

sured daytime BLH of 1.4 km. The reported deposition ve-

locities of HCHO and CHOCHO are 0.05–1 cm s−1 (Stickler

et al., 2006) and 0.15–0.3 cm s−1 (c.f., Washenfelder et al.,

2011), respectively. Though the average loss of HCHO and

CHOCHO through dry deposition in the model base case is

faster than reported, it does not take the diurnal variation of

boundary layer into account. During night, assuming a BLH

of 100m, a deposition velocity of 1 cm s−1 results in a life-

time of 2.8 h which is an order of magnitude shorter than the

τD of 24 h. This means the loss of HCHO and CHOCHO dur-

ing night should be faster than the model base case predicted.

Based on the model scenario M1, we replaced the constant

τD of HCHO (CHOCHO) by a time dependent lifetime cal-

culated from the measured BLH (assume nighttime value of

100m) and a deposition velocity of 1 cm s−1 (0.3 cm s−1)

(model scenario M2). As shown in Fig. 4, for morning hours

(06:00–10:00), the calculated HCHO and CHOCHO concen-

trations by the model scenario M2 decrease by 34% and

16% of the values by the model scenario M1, respectively.

However, the influence of dry deposition on the modeled

HCHO and CHOCHO is marginal during the afternoon.

If the air mass detected by MAX-DOAS was inhomo-

geneously mixed, the HCHO and CHOCHO concentrations
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calculated from locally measured OH, NMHCs, etc. could be

different from that at other points. This will result in HCHO

and CHOCHO concentration gradients, and lead to HCHO

and CHOCHO transport through horizontal advection. Dur-

ing daytime, considering the short lifetime of HCHO and

CHOCHO (≈1.5 h), the low wind speed (≈ 2m s−1) at the

BG site, and the homogeneous type of land usage along the

MAX-DOAS viewing direction, horizontal advection might

have only a minor influence on the HCHO and CHOCHO

simulation.

With regard to the vertical dilution which is caused by the

mixing of the shallow (but growing) mixing layer with the

nocturnal boundary layer and with the residual layer between

sunrise and noon, we can estimate the dilution rate to be con-

stant (kdilu) from the decay of the measured black carbon

concentrations. During the campaign, the black carbon con-

centration usually experienced a fast decrease around sunrise

(i.e., 06:00–10:00) and showed stable values after 11:00 until

sunset. The diurnal variation of the black carbon concentra-

tion indicates an efficient vertical dilution in the period of

06:00–10:00, and a well mixed boundary layer since 11:00.

In the 6 modeling days, the calculated kdilu ranges from 0.2 to

0.61 h−1 with an average value of 0.41 h−1. Assuming a con-

stant kdilu of 0.41 h
−1, we applied this removal to all species

by vertical dilution for the time period of 06:00–10:00 in the

model scenario M2 (i.e., model scenario M3). Compared to

the model scenario M2, significant decrease (by ≈ 40%) of

modeled HCHO and CHOCHO concentrations can be iden-

tified during morning hours (Fig. 4).

In addition to the modification of production terms of

HCHO and CHOCHO in the model, including vertical di-

lution and modified dry deposition (model scenario M3) re-

sults in reasonable agreement between modeled and mea-

sured HCHO and CHOCHO concentrations in most of the

time during the 6 cloud-free days (Fig. 4). However, during

early morning hours (06:00–09:00), the modeled CHOCHO

concentrations are still significantly higher than the measured

values. For days without the influence of direct precursor

emission in the morning (i.e., 12, 20, and 21 July), the mod-

eled HCHO concentrations are also higher than the measured

values.

Laboratory and field studies indicate that HCHO and

CHOCHO in the gas phase can be lost on aerosols through

heterogeneous uptake processes (Volkamer et al., 2007;

Wang et al., 2010; Li et al., 2011; Washenfelder et al., 2011;

Toda et al., 2014). This uptake process has been shown to be

related to the acidity (Jayne et al., 1996; Liggio et al., 2005)

or the ionic strength (Kroll et al., 2005) of aerosols. Using

an online Aerosol Inorganics Model (AIM, Model II) (http:

//www.aim.env.uea.ac.uk/aim/model2/model2a.php) and the

method described by Zhang et al. (2007), we estimated H+

activity aH+ and ionic strength within the aqueous particle

phase from aerosol mass spectrometry (AMS) measurements

of NH+
4 , SO

2−
4 , NO

−
3 , and Cl

− in PM1. During the day-

time of the 6 cloud-free days, the average value of the cal-

culated aH+ was 1.47× 10−2mol L−1 (corresponding to a

pH value of 1.8), indicating high aerosol acidity at the BG

site. Given the high aerosol concentrations in the early morn-

ing hours (Fig. 1), we investigated the sensitivity of modeled

HCHO and CHOCHO concentrations on heterogeneous up-

take processes (i.e., model scenario M4). Using an uptake

coefficient of 10−3 as indicated by laboratory and field stud-

ies (Jayne et al., 1996; Liggio et al., 2005; Volkamer et al.,

2007), the calculated CHOCHO concentration by the model

scenario M4 decrease significantly (by ≈ 70%) from that by

the model scenario M3 for the early morning hours. In the

afternoon, due to decreased aerosol concentration, the influ-

ence of the uptake by aerosols on the modeled CHOCHO

concentrations becomes small. Compared to the model sce-

nario M3, the model scenario M4 provides better agreement

between modeled and measured HCHO and CHOCHO con-

centrations (Fig. 4). Under tropospheric conditions, while the

uptake coefficient of 10−3 can be realistic for CHOCHO,

there remains a large uncertainty for HCHO. The value of

10−3 used in the model scenario M4 for HCHO is estimated

from laboratory studies representing typical conditions in the

upper troposphere or in the stratosphere (i.e., low tempera-

ture and high aerosol acidity) (Jayne et al., 1996). During ex-

periments performed under tropospheric conditions by Kroll

et al. (2005), no uptake of HCHO by aerosols was observed.

However, some laboratory (Sassine et al., 2010; Li et al.,

2011) and field (Wang et al., 2010; Toda et al., 2014) studies

identified loss of HCHO on tropospheric aerosols under cer-

tain conditions. Therefore, it is possible that the use of 10−3

as the HCHO uptake coefficient could not well represent the

condition at the BG site.

Table 3 summarized the relative changes of modeled

HCHO and CHOCHO concentrations by adding additional

processes to the model base case (i.e., model scenarios M1–

M4). By including additional production and destruction

terms (i.e., model scenario M4), the modeled HCHO and

CHOCHO concentrations during daytime (06:00–18:00) de-

crease by ≈ 80% of the values predicted by the model base

case. On average, the production terms (i.e., deviation from

steady-state, vertical transport of isoprene) and the uptake

by aerosols have the largest effect (≈ 50%) on the concen-

tration decrease, followed by vertical dilution (≈ 30%) and

deposition (≈ 15%). Increased influence of vertical dilution

and deposition on the concentration decrease can be found

for morning hours.

4.2 Influences on the CHOCHO to HCHO ratio

As illustrated by Vrekoussis et al. (2010) and DiGangi et al.

(2012), the CHOCHO to HCHO ratio (RGF) can be used

as an indicator of anthropogenic or biogenic impact on

photochemistry. When HCHO and CHOCHO are entirely

photochemically formed, RGF is determined by the rela-

tive strength of production and destruction of HCHO and

CHOCHO. When the system is in steady-state, RGF can be
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Figure 5. Time series of modeled RGF (by the model base case), measured NO and NO2 concentrations and NMHC compositions for the

6 cloud-free days during the PRIDE-PRD2006 campaign. The NMHC composition is expressed as the fraction of OH reactivity of a certain

type of NMHC to that of the total NMHC.

expressed as

RGF =
[CHOCHO]

[HCHO]
=

PCHOCHO

PHCHO
·

kHCHOd

kCHOCHOd

. (1)

Given a certain OH concentration, photolysis frequencies,

and deposition rate, kHCHOd /kCHOCHOd is well defined, and

RGF depends on PCHOCHO/PHCHO. PCHOCHO/PHCHO is

largely influenced by the NMHC composition of the inves-

tigated air mass.

In the 6 cloud-free days during the PRIDE-PRD2006 cam-

paign, the average value of measured and modeled (by the

model base case) RGF is 0.059± 0.024 and 0.075± 0.035,

respectively. In addition to photochemical processes, direct

emissions also contribute to ambient HCHO concentrations

(Garcia et al., 2006), which would lead to a decease of RGF.

Due to the lack of information on the primary HCHO sources

for areas around the BG site, HCHO emission were not in-

cluded in our model. However, in the early morning of 13,

24, and 25 July when combustion events were prevailing in

the surrounding areas of the BG site, we found high HCHO

concentrations and low RGF (≈ 0.03). So, there is a possibil-

ity that some HCHO primary sources existed in the surround-

ing area, which causes the discrepancy between modeled and

measured RGF.

On the other hand, the model base case can be used to

investigate the influence of different chemical processes on

the variation of RGF. Given the similarity of the photochem-

ical processes of HCHO and CHOCHO, RGF shows little

sensitivity on the total NMHC reactivities (kTNMHCOH ). When

kTNMHCOH in the model are decreased to half of the mea-

sured values, PCHOCHO and PHCHO are decreased similarly

by 46% on average. As a result, RGF remains the same as be-

fore. However, RGF slightly depends on the OH level. With

the decrease of OH concentration, both PCHOCHO, PHCHO,

kHCHOd , and kCHOCHOd are found to be decreasing but to

different extents. When OH concentration is decreased to

50% of the measured values, the decrease of kHCHOd and

kCHOCHOd are similar (i.e., by 28% on average), but the de-

crease of PCHOCHO (by 55% on average) is stronger than

that of PHCHO (by 49% on average). This results in an aver-

age decrease of RGF by 12%. The different dependence be-

tween PHCHO and PCHOCHO on OH concentration is caused

by the fact that HCHO and CHOCHO are produced at dif-

ferent generations of NMHCs oxidation by OH. At the BG

site, oxidation of isoprene and alkenes by OH is the ma-

jor process producing HCHO (Sect. 3.2). During this pro-

cess, HCHO is mostly produced as a first generation prod-

uct and only one OH radical is consumed when each HCHO

is generated. Therefore, PHCHO is almost linearly dependent

on OH concentration. However, this situation is different for

CHOCHO. Under the conditions at the BG site, we found

that CHOCHO is mostly the third or forth generation prod-

uct of isoprene and aromatic oxidation by OH. Generating

one CHOCHO molecule needs more than one OH radical,

which leads to a non-linear dependence of PCHOCHO on OH.

Looking at the time series of modeled RGF (Fig. 5),

high RGF is usually found in early morning and a sharp

decrease of RGF is identified shortly after sunrise. This
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pattern follows the diurnal variation of NOx concentrations

and of the contribution of aromatics to the total NMHC

reactivities (kAromaticsOH /kTNMHCOH ), but is opposite to that of

the contribution of isoprene to the total NMHC reactivi-

ties (k
Isoprene

OH /kTNMHCOH ), thereby indicating a positive (neg-

ative) impact of the anthropogenic (biogenic) emissions on

RGF. A similar phenomenon was observed by DiGangi et al.

(2012) at a rural site in the USA. Our model shows that

PCHOCHO/PHCHO of aromatic compounds (e.g., benzene,

toluene, m,p-xylene) are more than 3 times larger than that

of isoprene. The PCHOCHO/PHCHO of alkanes and alkenes are

even smaller than that of isoprene, due to the little contri-

bution of alkanes and alkenes to the CHOCHO production.

Therefore, higher RGF can be expected when NMHC con-

centration is dominated by aromatics. Besides the NMHC

composition, NOx levels can also influence the RGF since

HCHO and CHOCHO have different sensitivities to the

change of NOx concentrations. The NO level determines the

conversion of RO2 to RO which finally produces HCHO and

CHOCHO. When the NO concentration in the model is in-

creased, a larger concentration increase is found for HCHO

than for CHOCHO leading to a decrease of RGF. This is be-

cause the contribution of RO decomposition to the HCHO

formation is larger than to the CHOCHO formation at the

BG site. At low-NO, RO2 +HO2 reaction forming hydroper-

oxides competes with RO2 +NO. Therefore, the sensitivity

of RGF to NO is found to be low and high in high- and low-

NO regimes, respectively. In general, an increase of NO con-

centration by 1% results in a decrease of RGF by 0–0.2%.

In contrast to NO, an increases of NO2 causes an increase

of RGF. This is because, compared to HCHO, the modeled

CHOCHO is more sensitive to NO2. Change of NO2 con-

centrations can have an influence on OH (via OH+NO2)

and NO3 concentrations. Since the OH concentration in the

model is constrained to the measurements, CHOCHO and

HCHO formation through OH initiated NMHC degradations

will only be marginally affected when the NO2 concentration

is increased / decreased. Since the NO3 reactions have dif-

ferent contribution to the HCHO and CHOCHO production

(Sect. 3.2), increase of the modeled NO3 concentration as a

result of the increase of NO2 can cause the change of RGF. It

is found that the change of RGF ranges from 0 to 0.3% when

the NO2 concentration is changed by 1%; the lower the NO2
concentration, the higher the sensitivity of RGF to NO2.

Based on above analysis, the modeled diurnal variation of

RGF can be explained by the existence of nighttime OH, by

the change of NMHC composition, and by the NOx concen-

tration. During night, the existence of significant amounts

of OH radicals made the OH+NMHC reactions the ma-

jor pathway of HCHO and CHOCHO formation. The in-

crease of RGF after sunset is then the result of the increase

of kAromaticsOH /kTNMHCOH and of the NO2 concentration; and the

slowing down of the RGF increase is caused by the occur-

rence of high NO concentrations later on. Around sunrise,

due to the decrease of kAromaticsOH /kTNMHCOH and of the NOx
concentration, and the earlier occurrence of CHOCHO pho-

tolysis (compared to HCHO, the absorption cross section of

CHOCHO extends more to the visible wavelength range), the

decrease of PCHOCHO/PHCHO and of k
HCHO
d /kCHOCHOd lead to

the decrease ofRGF in the model. When setting the nighttime

OH concentration to zero, modeled HCHO and CHOCHO

concentrations during night are then mainly determined by

their production in the previous afternoon which are mostly

determined through isoprene oxidation (Sect. 3.2). As a re-

sult, modeled RGF during night are as low as those during the

previous afternoon when total NMHC reactivity was domi-

nated by isoprene.

In addition to the above factors, additional processes in-

cluded in the model scenarios M1–M4 also influence the

CHOCHO to HCHO ratio (RGF). As shown in Table 3 and

Fig. 4, from noon to the afternoon, the modeled RGF in the

model scenario M4 increase by 30% of the values in the

model base case. Larger increase of RGF can be found dur-

ing early morning hours, mainly caused by the faster removal

of HCHO by dry deposition than that of CHOCHO. Differ-

ent from other processes, vertical dilution generally causes a

small decrease of RGF.

By analyzing satellite measurement results, Vrekoussis

et al. (2010) concluded that high RGF can represent regions

strongly influenced by biogenic emissions. However, based

on the in situ observations, DiGangi et al. (2012) found that

the anthropogenic emissions have positive impact on RGF.

Our model study at the BG site indicate that the influence

of anthropogenic emissions on RGF is rather complicated.

On the one hand, anthropogenic emissions of aromatics and

NO2 can contribute to the increase ofRGF. On the other, both

emitted NO and HCHO can lead to a decrease of RGF. For

example, compared to the period of 12:00–18:00 on 21 July

although the contribution of aromatics to kTNMHCOH is lower

than on 24 July the lower NO and higher NO2 concentrations

during 24 July caused higher modeled RGF. Moreover, pro-

cesses like dry deposition and uptake by aerosols also have

influence on RGF.

5 Summary and conclusion

HCHO and CHOCHO are trace gases produced through

the oxidation of NMHCs. High vertical column densities of

HCHO and CHOCHO have been observed by satellite mea-

surements for the Pearl River Delta (PRD) region in southern

China, indicating the existence of high photochemical reac-

tivity. However, investigations on the sources and sinks of

HCHO and CHOCHO in the PRD are rather limited. Dur-

ing the PRIDE-PRD2006 campaign, MAX-DOAS observa-

tions of HCHO and CHOCHO together with measurements

of HOX radicals, trace gases, aerosols, and meteorological

parameters were performed at the semi-rural site, Back Gar-

den (BG), in the PRD. Using these measurement results and
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a box model, we investigated production and destruction pro-

cesses of HCHO and CHOCHO for 6 cloud-free days during

the campaign.

The production of HCHO and CHOCHO at the BG site

took place under the combined influence of anthropogenic

and biogenic emissions. OH initiated oxidation of isoprene

accounts for nearly half of the HCHO and CHOCHO forma-

tion, with increased contribution in the afternoon. The an-

thropogenic source of HCHO includes the degradation of

alkenes (29%), aromatics (15%), and alkanes (13%). Be-

sides isoprene, most of the CHOCHO production is due

to the oxidation of aromatics (41%). While the ozonoly-

sis of alkenes contributes to the formation of HCHO, some

CHOCHO is formed through the oxidation of NMHCs by

NO3 radicals. However, compared to the OH initiated oxi-

dation of NMHCs, ozonolysis of alkenes and NO3 initiated

NMHCs degradations are of minor importance in terms of

the total HCHO and CHOCHO production. The observa-

tion of OH radicals at night results in maximum HCHO and

CHOCHO concentrations during early morning, which how-

ever is different from observations at other places around the

world.

Compared to the measurements, the box model overesti-

mates the HCHO and CHOCHO concentrations by a factor

of 2–5. This discrepancy seems to be caused by a combina-

tion of effects each contributing approximately by the same

amount, i.e., the lack of knowledge about (1) fresh emissions,

(2) fast vertical transport of precursor NMHCs, (3) dry depo-

sition, (4) vertical dilution during the lift of the mixing layer

height during early morning hours, and (5) uptake of HCHO

and CHOCHO by aerosols. Our analysis indicates that, in

addition to chemical considerations, physical processes like

transport, dilution, and dry deposition have to be well con-

sidered for any model predicting HCHO and CHOCHO con-

centrations.

Our model simulations indicate that the CHOCHO to

HCHO ratio at the BG site is influenced not only by the

NMHC composition but also by the concentration levels of

OH and NOx. HigherRGF result from higher aromatic contri-

butions to total NMHCs, from higher OH and NO2 but lower

NO concentrations. Moreover, processes like vertical trans-

port/dilution, dry deposition, and uptake by aerosols can also

influence the CHOCHO to HCHO ratio. The complex de-

pendence of RGF on NMHCs, OH, NOx, and other physical

/ chemical processes makes it difficult to use RGF as an indi-

cator of anthropogenic or biogenic emissions.

The Supplement related to this article is available online

at doi:10.5194/acp-14-12291-2014-supplement.
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