000202069 001__ 202069
000202069 005__ 20240313103127.0
000202069 037__ $$aFZJ-2015-04358
000202069 1001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b0$$ufzj
000202069 1112_ $$aSparks Bernstein Workshop - Beyond Mean-field theory$$cGoettingen$$d2015-06-02 - 2015-06-05$$wGermany
000202069 245__ $$aTheory of individual pairwise correlations in stochastic binary networks
000202069 260__ $$c2015
000202069 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1443517148_3856$$xInvited
000202069 3367_ $$033$$2EndNote$$aConference Paper
000202069 3367_ $$2DataCite$$aOther
000202069 3367_ $$2ORCID$$aLECTURE_SPEECH
000202069 3367_ $$2DRIVER$$aconferenceObject
000202069 3367_ $$2BibTeX$$aINPROCEEDINGS
000202069 520__ $$aPairwise correlations between the activities of neurons exhibittime-dependent modulations with respect to behavior [1], influence theinformation-content of population signals [2,3], determine theinteraction of neuronal activity and spike-timing dependent synapticplasticity [4].Correlations averaged over neuron pairs are closely linked tofluctuations of the population activity and are hence readilyaccessible by population-averaged mean-field theory in the large Nlimit [5], but also in finite-sized networks [6].Here we leave the population description and extend the theory ofsecond order correlations in stochastic binary networks [7] toindividual neuron pairs. We show how a systematic truncation of themoment hierarchy that consistently neglects third order cumulantsyields a non-linear system of equations for individual mean activitiesand pairwise covariances, which after linearization, leads to amodified Lyapunov equation. We show that the method of solution,sufficient for the population-averaged case, yields a systematicover-estimation of the spread of individual pairwise covariances,while an adapted method of solution provides quantitative predictions ina balanced random network model down to hundreds of neurons.As a corollary we show how the covariance matrix together with itsslope at zero time lag determine the effective synaptic interactionstrength between neurons only modulo the total synaptic noise level ofthe receiving neuron. The presented theory renders the investigationof distributed pairwise correlations analytically accessible and mayprove useful for network reconstruction as well as to foster ourunderstanding of correlation-sensitive synaptic plasticity inrecurrent networks.Partially supported by the Helmholtz Association: Young investigator'sgroup VH-NG-1028, portfolio theme SMHB, the Jülich Aachen ResearchAlliance (JARA), and 604102 (HBP).[1] Kilavik BE, Roux S, Ponce-Alvarez A, Confais J, Gruen S, et al. (2009) J Neurosci 29: 12653--12663.[2] Zohary E, Shadlen MN, Newsome WT (1994). Nature 370: 140--143.[3] Shamir M, Sompolinsky H (2001). In: Advances in Neural Information Processing Systems. MIT Press, pp. 277--284.[4] Morrison A, Diesmann M and Gerstner W (2008). Biol. Cybern. 98 459--78[5] Renart A, De La Rocha J, Bartho P, Hollender L, Parga N, et al. (2010). Science 327: 587–590.[6] Tetzlaff T, Helias M, Einevoll GT, Diesmann M (2012). PLoS Comput Biol 8(8): e1002596.[7] Ginzburg I, Sompolinsky H (1994). Phys Rev E 50: 3171--3191.
000202069 536__ $$0G:(DE-HGF)POF2-89574$$a89574 - Theory, modelling and simulation (POF2-89574)$$cPOF2-89574$$fPOF II T$$x0
000202069 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x1
000202069 773__ $$y2015
000202069 8564_ $$uhttp://www.nncn.de/en/news/events/bernstein-sparks-workshop-mean-field-theory
000202069 8564_ $$uhttps://juser.fz-juelich.de/record/202069/files/sparks_helias15.pdf$$yRestricted
000202069 8564_ $$uhttps://juser.fz-juelich.de/record/202069/files/sparks_helias15.gif?subformat=icon$$xicon$$yRestricted
000202069 8564_ $$uhttps://juser.fz-juelich.de/record/202069/files/sparks_helias15.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202069 8564_ $$uhttps://juser.fz-juelich.de/record/202069/files/sparks_helias15.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202069 8564_ $$uhttps://juser.fz-juelich.de/record/202069/files/sparks_helias15.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202069 8564_ $$uhttps://juser.fz-juelich.de/record/202069/files/sparks_helias15.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202069 909CO $$ooai:juser.fz-juelich.de:202069$$pVDB
000202069 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202069 9130_ $$0G:(DE-HGF)POF2-89574$$1G:(DE-HGF)POF2-89570$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000202069 9131_ $$0G:(DE-HGF)POF2-89574$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vTheory, modelling and simulation$$x0
000202069 9141_ $$y2015
000202069 920__ $$lno
000202069 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000202069 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000202069 980__ $$aconf
000202069 980__ $$aVDB
000202069 980__ $$aI:(DE-Juel1)INM-6-20090406
000202069 980__ $$aI:(DE-Juel1)IAS-6-20130828
000202069 980__ $$aUNRESTRICTED
000202069 981__ $$aI:(DE-Juel1)IAS-6-20130828
000202069 981__ $$aI:(DE-Juel1)IAS-6-20130828