001     202074
005     20240711101424.0
024 7 _ |2 doi
|a 10.1016/j.est.2014.12.001
024 7 _ |a WOS:000218491200007
|2 WOS
037 _ _ |a FZJ-2015-04363
082 _ _ |a 333.7
100 1 _ |0 P:(DE-Juel1)156166
|a Berger, Cornelius
|b 0
|e Corresponding author
245 _ _ |a Development of storage materials for high-temperature rechargeable oxide batteries
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449826950_10442
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a A high-temperature rechargeable oxide battery (ROB) comprises a regenerative solid oxide cell (SOC) and oxygen-ion storage that consists of a porous Fe2O3 base redox material. This material possesses good redox kinetics, a high oxygen-ion storage capacity, and an acceptable long-term stability. Yet, observations demonstrate degradation effects such as particle coarsening and an outward diffusion of iron leading to layer formation during operation of the ROB at 800 °C.To clarify the influence of the material composition on degradation, various oxides were added as a stabilizing scaffold for the Fe2O3 base material. Pressed samples of the binary mixtures were sintered in air at 900 °C and subsequently redox-treated up to 20 times under conditions that simulate those present in an actual ROB (800 °C, Ar–2%H2 or Ar–7%H2O–2%H2). Afterwards, the degradation properties were analyzed by laser microscopy and the phase composition was measured using X-ray diffraction. Results indicate that the addition of yttria-stabilized zirconia (8YSZ) or pure zirconia (ZrO2) can suppress structural degradation thus maintaining reaction kinetics. In contrast, the use of yttria (Y2O3) does not significantly mitigate degradation phenomena. Consequently, storage components consisting of 8YSZ and Fe2O3 were employed in an ROB test, resulting in more than 200 cycles with a current density of 150 mA/cm2 and cycle durations of up to 70 min.
536 _ _ |0 G:(DE-HGF)POF3-135
|a 135 - Fuel Cells (POF3-135)
|c POF3-135
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)SOFC-20140602
|a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|c SOFC-20140602
|f SOFC
|x 1
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 2
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)138664
|a Tokariev, Oleg A.
|b 1
700 1 _ |0 P:(DE-Juel1)145679
|a Orzessek, Peter
|b 2
700 1 _ |0 P:(DE-Juel1)129616
|a Hospach, Andreas
|b 3
700 1 _ |0 P:(DE-Juel1)145945
|a Fang, Qingping
|b 4
700 1 _ |0 P:(DE-Juel1)129591
|a Bram, Martin
|b 5
700 1 _ |0 P:(DE-Juel1)129782
|a Quadakkers, Willem J.
|b 6
700 1 _ |0 P:(DE-Juel1)129636
|a Menzler, Norbert H.
|b 7
700 1 _ |0 P:(DE-Juel1)129594
|a Buchkremer, Hans P.
|b 8
773 _ _ |0 PERI:(DE-600)2826805-2
|a 10.1016/j.est.2014.12.001
|p 54-64
|t Journal of energy storage
|v 1
|x 2352-152X
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/202074/files/1-s2.0-S2352152X1500002X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202074/files/1-s2.0-S2352152X1500002X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202074/files/1-s2.0-S2352152X1500002X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202074/files/1-s2.0-S2352152X1500002X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202074/files/1-s2.0-S2352152X1500002X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202074/files/1-s2.0-S2352152X1500002X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202074
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156166
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138664
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145679
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129616
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145945
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129591
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129782
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129636
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129594
|a Forschungszentrum Jülich GmbH
|b 8
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-123
|1 G:(DE-HGF)POF2-120
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|v Fuel Cells
|x 0
913 1 _ |0 G:(DE-HGF)POF3-135
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0040
|2 StatID
|a Peer Review unknown
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21