000202095 001__ 202095
000202095 005__ 20210129220029.0
000202095 0247_ $$2doi$$a10.1089/rej.2011.1284
000202095 0247_ $$2pmid$$apmid:22533432
000202095 0247_ $$2ISSN$$a1094-5458
000202095 0247_ $$2ISSN$$a1549-1684
000202095 0247_ $$2ISSN$$a1557-8577
000202095 0247_ $$2ISSN$$a1557-8984
000202095 0247_ $$2WOS$$aWOS:000303383600021
000202095 037__ $$aFZJ-2015-04384
000202095 041__ $$aeng
000202095 082__ $$a610
000202095 1001_ $$0P:(DE-HGF)0$$aLuers, Lars$$b0
000202095 245__ $$aKinetics of Advanced Glycation End Products Formation on Bovine Serum Albumin with Various Reducing Sugars and Dicarbonyl Compounds in Equimolar Ratios
000202095 260__ $$aLarchmont, NY$$bLiebert$$c2012
000202095 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435741140_1776
000202095 3367_ $$2DataCite$$aOutput Types/Journal article
000202095 3367_ $$00$$2EndNote$$aJournal Article
000202095 3367_ $$2BibTeX$$aARTICLE
000202095 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202095 3367_ $$2DRIVER$$aarticle
000202095 520__ $$aReducing sugars and reactive dicarbonyl compounds play a major role in glycation of proteins in vivo. Glycation of proteins is the first step in of a nonenzymatic reaction, resulting in advanced glycation end products (AGEs). AGEs can inactivate proteins or modify their biological activities. Therefore, it is important to understand the mechanism of AGE formation. Here, we systematically analyzed the kinetics of AGE formation in vitro by fluorescence and absorption measurements utilizing a microplate reader system and bovine serum albumin (BSA) as a model protein. Comparing different concentrations of BSA, we applied various reducing sugars and reactive dicarbonyl compounds as AGE-inducing agents at different concentrations. In summary, this experimental setup enabled us to measure the kinetics of AGE formation in an efficient and defined way.
000202095 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000202095 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de, PubMed,
000202095 650_7 $$2NLM Chemicals$$aCarbohydrates
000202095 650_7 $$2NLM Chemicals$$aGlycosylation End Products, Advanced
000202095 650_7 $$2NLM Chemicals$$aSerum Albumin, Bovine
000202095 650_7 $$030237-26-4$$2NLM Chemicals$$aFructose
000202095 650_7 $$0681HV46001$$2NLM Chemicals$$aRibose
000202095 650_7 $$094ZLA3W45F$$2NLM Chemicals$$aArginine
000202095 650_7 $$0IY9XDZ35W2$$2NLM Chemicals$$aGlucose
000202095 7001_ $$0P:(DE-HGF)0$$aRysiewski, K.$$b1
000202095 7001_ $$0P:(DE-HGF)0$$aDumpitak, Christian$$b2
000202095 7001_ $$0P:(DE-Juel1)131992$$aBirkmann, Eva$$b3$$eCorresponding Author
000202095 773__ $$0PERI:(DE-600)2155984-3$$a10.1089/rej.2011.1284$$gVol. 15, no. 2, p. 201 - 205$$n2$$p201 - 205$$tRejuvenation research$$v15$$x1094-5458$$y2012
000202095 8564_ $$uhttps://juser.fz-juelich.de/record/202095/files/rej.2011.1284.pdf$$yRestricted
000202095 8564_ $$uhttps://juser.fz-juelich.de/record/202095/files/rej.2011.1284.gif?subformat=icon$$xicon$$yRestricted
000202095 8564_ $$uhttps://juser.fz-juelich.de/record/202095/files/rej.2011.1284.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202095 8564_ $$uhttps://juser.fz-juelich.de/record/202095/files/rej.2011.1284.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202095 8564_ $$uhttps://juser.fz-juelich.de/record/202095/files/rej.2011.1284.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202095 8564_ $$uhttps://juser.fz-juelich.de/record/202095/files/rej.2011.1284.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202095 909CO $$ooai:juser.fz-juelich.de:202095$$pVDB
000202095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131992$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202095 9132_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000202095 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000202095 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202095 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202095 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202095 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202095 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202095 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202095 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202095 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000202095 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000202095 920__ $$lyes
000202095 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000202095 980__ $$ajournal
000202095 980__ $$aVDB
000202095 980__ $$aI:(DE-Juel1)ICS-6-20110106
000202095 980__ $$aUNRESTRICTED
000202095 981__ $$aI:(DE-Juel1)IBI-7-20200312