000202109 001__ 202109
000202109 005__ 20210129220032.0
000202109 0247_ $$2doi$$a10.1371/journal.pone.0066917
000202109 0247_ $$2Handle$$a2128/8933
000202109 0247_ $$2WOS$$aWOS:000321341000022
000202109 037__ $$aFZJ-2015-04398
000202109 082__ $$a500
000202109 1001_ $$0P:(DE-Juel1)165798$$aGushchin, Ivan$$b0$$ufzj
000202109 245__ $$aTwo Distinct States of the HAMP Domain from Sensory Rhodopsin Transducer Observed in Unbiased Molecular Dynamics Simulations
000202109 260__ $$aLawrence, Kan.$$bPLoS$$c2013
000202109 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435668697_3520
000202109 3367_ $$2DataCite$$aOutput Types/Journal article
000202109 3367_ $$00$$2EndNote$$aJournal Article
000202109 3367_ $$2BibTeX$$aARTICLE
000202109 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202109 3367_ $$2DRIVER$$aarticle
000202109 520__ $$aHAMP domain is a ubiquitous module of bacterial and archaeal two-component signaling systems. Considerable progress has been made recently in studies of its structure and conformational changes. However, the mechanism of signal transduction through the HAMP domain is not clear. It remains a question whether all the HAMPs have the same mechanism of action and what are the differences between the domains from different protein families. Here, we present the results of unbiased molecular dynamics simulations of the HAMP domain from the archaeal phototaxis signal transducer NpHtrII. Two distinct conformational states of the HAMP domain are observed, that differ in relative position of the helices AS1 and AS2. The longitudinal shift is roughly equal to a half of an α-helix turn, although sometimes it reaches one full turn. The states are closely related to the position of bulky hydrophobic aminoacids at the HAMP domain core. The observed features are in good agreement with recent experimental results and allow us to propose that the states detected in the simulations are the resting state and the signaling state of the NpHtrII HAMP domain. To the best of our knowledge, this is the first observation of the same HAMP domain in different conformations. The simulations also underline the difference between AMBER ff99-SB-ILDN and CHARMM22-CMAP forcefields, as the former favors the resting state and the latter favors the signaling state.
000202109 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000202109 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202109 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b1$$ufzj
000202109 7001_ $$0P:(DE-HGF)0$$aGrudinin, Sergei$$b2$$eCorresponding Author
000202109 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0066917$$gVol. 8, no. 7, p. e66917 -$$n7$$pe66917 -$$tPLoS one$$v8$$x1932-6203$$y2013
000202109 8564_ $$uhttps://juser.fz-juelich.de/record/202109/files/journal.pone.0066917.pdf$$yOpenAccess
000202109 8564_ $$uhttps://juser.fz-juelich.de/record/202109/files/journal.pone.0066917.gif?subformat=icon$$xicon$$yOpenAccess
000202109 8564_ $$uhttps://juser.fz-juelich.de/record/202109/files/journal.pone.0066917.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202109 8564_ $$uhttps://juser.fz-juelich.de/record/202109/files/journal.pone.0066917.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202109 8564_ $$uhttps://juser.fz-juelich.de/record/202109/files/journal.pone.0066917.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202109 8564_ $$uhttps://juser.fz-juelich.de/record/202109/files/journal.pone.0066917.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202109 909CO $$ooai:juser.fz-juelich.de:202109$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000202109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165798$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202109 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202109 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000202109 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000202109 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000202109 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202109 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000202109 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000202109 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202109 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000202109 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202109 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202109 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202109 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000202109 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202109 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202109 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202109 920__ $$lyes
000202109 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000202109 9801_ $$aFullTexts
000202109 980__ $$ajournal
000202109 980__ $$aVDB
000202109 980__ $$aFullTexts
000202109 980__ $$aUNRESTRICTED
000202109 980__ $$aI:(DE-Juel1)ICS-6-20110106
000202109 981__ $$aI:(DE-Juel1)IBI-7-20200312