000202122 001__ 202122
000202122 005__ 20240610115646.0
000202122 0247_ $$2doi$$a10.1016/j.piutam.2015.03.002
000202122 0247_ $$2WOS$$aWOS:000380510300002
000202122 037__ $$aFZJ-2015-04411
000202122 082__ $$a530
000202122 1001_ $$0P:(DE-HGF)0$$aLamura, Antonio$$b0$$eCorresponding Author
000202122 245__ $$aRheological Properties of Sheared Vesicle and Cell Suspensions
000202122 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000202122 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435673107_4339
000202122 3367_ $$2DataCite$$aOutput Types/Journal article
000202122 3367_ $$00$$2EndNote$$aJournal Article
000202122 3367_ $$2BibTeX$$aARTICLE
000202122 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202122 3367_ $$2DRIVER$$aarticle
000202122 520__ $$aNumerical simulations of vesicle suspensions are performed in two dimensions to study their dynamical and rheological properties. An hybrid method is adopted, which combines a mesoscopic approach for the solvent with a curvature-elasticity model for the membrane. Shear flow is induced by two counter-sliding parallel walls, which generate a linear flow profile. The flow behavior is studied for various vesicle concentrations and viscosity ratios between the internal and the external fluid. Both the intrinsic viscosity and the thickness of depletion layers near the walls are found to increase with increasing viscosity ratio.
000202122 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000202122 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202122 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1$$ufzj
000202122 773__ $$0PERI:(DE-600)2590701-3$$a10.1016/j.piutam.2015.03.002$$gVol. 16, p. 3 - 11$$p3 - 11$$tProcedia IUTAM$$v16$$x2210-9838$$y2015
000202122 8564_ $$uhttps://juser.fz-juelich.de/record/202122/files/1-s2.0-S2210983815000280-main.pdf$$yRestricted
000202122 8564_ $$uhttps://juser.fz-juelich.de/record/202122/files/1-s2.0-S2210983815000280-main.gif?subformat=icon$$xicon$$yRestricted
000202122 8564_ $$uhttps://juser.fz-juelich.de/record/202122/files/1-s2.0-S2210983815000280-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202122 8564_ $$uhttps://juser.fz-juelich.de/record/202122/files/1-s2.0-S2210983815000280-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202122 8564_ $$uhttps://juser.fz-juelich.de/record/202122/files/1-s2.0-S2210983815000280-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202122 8564_ $$uhttps://juser.fz-juelich.de/record/202122/files/1-s2.0-S2210983815000280-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202122 909CO $$ooai:juser.fz-juelich.de:202122$$pVDB
000202122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202122 9130_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vSoft Matter Composites$$x0
000202122 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000202122 9141_ $$y2015
000202122 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202122 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000202122 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000202122 980__ $$ajournal
000202122 980__ $$aVDB
000202122 980__ $$aI:(DE-Juel1)IAS-2-20090406
000202122 980__ $$aI:(DE-Juel1)ICS-2-20110106
000202122 980__ $$aUNRESTRICTED
000202122 981__ $$aI:(DE-Juel1)IBI-5-20200312
000202122 981__ $$aI:(DE-Juel1)IAS-2-20090406
000202122 981__ $$aI:(DE-Juel1)ICS-2-20110106