000202123 001__ 202123
000202123 005__ 20240610120514.0
000202123 0247_ $$2doi$$a10.1103/PhysRevB.91.235305
000202123 0247_ $$2ISSN$$a0163-1829
000202123 0247_ $$2ISSN$$a0556-2805
000202123 0247_ $$2ISSN$$a1095-3795
000202123 0247_ $$2ISSN$$a1098-0121
000202123 0247_ $$2ISSN$$a1550-235X
000202123 0247_ $$2Handle$$a2128/8885
000202123 0247_ $$2WOS$$aWOS:000355619600001
000202123 037__ $$aFZJ-2015-04412
000202123 082__ $$a530
000202123 1001_ $$0P:(DE-Juel1)143949$$aSchnedler, Michael$$b0$$ufzj
000202123 245__ $$aQuantitative description of photoexcited scanning tunneling spectroscopy and its application to the GaAs(110) surface
000202123 260__ $$aCollege Park, Md.$$bAPS$$c2015
000202123 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1439279092_4232
000202123 3367_ $$2DataCite$$aOutput Types/Journal article
000202123 3367_ $$00$$2EndNote$$aJournal Article
000202123 3367_ $$2BibTeX$$aARTICLE
000202123 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202123 3367_ $$2DRIVER$$aarticle
000202123 520__ $$aA quantitative description of photoexcited scanning tunneling spectra is developed and applied to photoexcited spectra measured on p-doped nonpolar GaAs(110) surfaces. Under illumination, the experimental spectra exhibit an increase of the tunnel current at negative sample voltages only. In order to analyze the experimental data quantitatively, the potential and charge-carrier distributions of the photoexcited tip-vacuum-semiconductor system are calculated by solving the Poisson as well as the hole and electron continuity equations by a finite-difference algorithm. On this basis, the different contributions to the tunnel current are calculated using an extension of the model of Feenstra and Stroscio to include the light-excited carrier concentrations. The best fit of the calculated tunnel currents to the experimental data is obtained for a tip-induced band bending, which is limited by the partial occupation of the C3 surface state by light-excited electrons. The tunnel current at negative voltages is then composed of a valence band contribution and a photoinduced tunnel current of excited electrons in the conduction band. The quantitative description of the tunnel current developed here is generally applicable and provides a solid foundation for the quantitative interpretation of photoexcited scanning tunneling spectroscopy.
000202123 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000202123 542__ $$2Crossref$$i2015-06-04$$uhttp://link.aps.org/licenses/aps-default-license
000202123 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202123 7001_ $$0P:(DE-Juel1)145975$$aPortz, V.$$b1
000202123 7001_ $$0P:(DE-Juel1)139007$$aWeidlich, Phillip$$b2
000202123 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b3
000202123 7001_ $$0P:(DE-Juel1)130627$$aEbert, Ph.$$b4$$eCorresponding Author
000202123 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.91.235305$$bAmerican Physical Society (APS)$$d2015-06-04$$n23$$p235305$$tPhysical Review B$$v91$$x1098-0121$$y2015
000202123 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.91.235305$$gVol. 91, no. 23, p. 235305$$n23$$p235305$$tPhysical review / B$$v91$$x1098-0121$$y2015
000202123 8564_ $$uhttps://juser.fz-juelich.de/record/202123/files/PhysRevB.91.235305.pdf$$yOpenAccess
000202123 8564_ $$uhttps://juser.fz-juelich.de/record/202123/files/PhysRevB.91.235305.gif?subformat=icon$$xicon$$yOpenAccess
000202123 8564_ $$uhttps://juser.fz-juelich.de/record/202123/files/PhysRevB.91.235305.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000202123 8564_ $$uhttps://juser.fz-juelich.de/record/202123/files/PhysRevB.91.235305.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000202123 8564_ $$uhttps://juser.fz-juelich.de/record/202123/files/PhysRevB.91.235305.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000202123 8564_ $$uhttps://juser.fz-juelich.de/record/202123/files/PhysRevB.91.235305.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000202123 909CO $$ooai:juser.fz-juelich.de:202123$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000202123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145975$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202123 9130_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen für zukünftige Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000202123 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000202123 9141_ $$y2015
000202123 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000202123 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202123 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202123 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202123 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202123 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202123 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202123 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202123 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000202123 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202123 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000202123 920__ $$lyes
000202123 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000202123 9801_ $$aFullTexts
000202123 980__ $$ajournal
000202123 980__ $$aVDB
000202123 980__ $$aI:(DE-Juel1)PGI-5-20110106
000202123 980__ $$aUNRESTRICTED
000202123 980__ $$aFullTexts
000202123 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.64.1051
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.65.456
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(97)00480-7
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.R2165
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1382869
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.026802
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2888733
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.47.6117
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3177329
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1432113
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.70.2471
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.115764
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.118945
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.195318
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.43.1891
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1380/ejssnt.2006.192
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.53.8090
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.589571
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.115331
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.583691
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.1606466
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.51.9696
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1328412
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1405500
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.5816
000202123 999C5 $$1Ph. Ebert$$2Crossref$$oPh. Ebert Nanoelectronics and Information Technology 2012$$tNanoelectronics and Information Technology$$y2012
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1464-4258/8/4/S19
000202123 999C5 $$1V. Tsukruk$$2Crossref$$oV. Tsukruk Scanning Probe Microscopy of Soft Matter: Fundamentals and Practices 2012$$tScanning Probe Microscopy of Soft Matter: Fundamentals and Practices$$y2012
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.165327
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(92)90638-M
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.8043
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i1999-00206-0
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.085316
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1569419
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.085210
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1723358
000202123 999C5 $$1S. M. Sze$$2Crossref$$oS. M. Sze Physics of Semiconductor Devices 2007$$tPhysics of Semiconductor Devices$$y2007
000202123 999C5 $$1S. Selberherr$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-7091-8752-4$$y1984
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/18/4/044015
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.321330
000202123 999C5 $$1R. A. Smith$$2Crossref$$oR. A. Smith Semiconductors 1959$$tSemiconductors$$y1959
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(86)90243-8
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.14.556
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.30.4828
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.075320
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(79)91053-6
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(79)90056-5
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.41.9880
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.2997
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.7799
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S1359-0286(00)00046-2
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.353991
000202123 999C5 $$2Crossref$$oSemiconductors, Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties 2001$$tSemiconductors, Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties$$y2001
000202123 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2014.07.024