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A quantitative description of photoexcited scanning tunneling spectra is developed and applied to photoexcited

spectra measured on p-doped nonpolar GaAs(110) surfaces. Under illumination, the experimental spectra exhibit

an increase of the tunnel current at negative sample voltages only. In order to analyze the experimental data

quantitatively, the potential and charge-carrier distributions of the photoexcited tip-vacuum-semiconductor system

are calculated by solving the Poisson as well as the hole and electron continuity equations by a finite-difference

algorithm. On this basis, the different contributions to the tunnel current are calculated using an extension of the

model of Feenstra and Stroscio to include the light-excited carrier concentrations. The best fit of the calculated

tunnel currents to the experimental data is obtained for a tip-induced band bending, which is limited by the

partial occupation of the C3 surface state by light-excited electrons. The tunnel current at negative voltages is

then composed of a valence band contribution and a photoinduced tunnel current of excited electrons in the

conduction band. The quantitative description of the tunnel current developed here is generally applicable and

provides a solid foundation for the quantitative interpretation of photoexcited scanning tunneling spectroscopy.
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I. INTRODUCTION

The efficiency of solar cell and optoelectronic devices

is closely connected to the nanoscale distribution of charge

carriers. For example, defects can give rise to nonradiative

carrier recombination centers, reducing the charge-carrier

concentration locally [1,2]. Such effects are detrimental to both

the electron-light and light-electron conversion efficiencies in

optoelectronic and solar cell devices, respectively. In order

to understand the physical processes involved at the atomic

scale, the materials used in the device structures need to

be investigated simultaneously under illumination and with

atomic resolution.

Photoexcited scanning tunneling spectroscopy (STS) [3]

is ideally suited to probe the illumination-induced local

surface photovoltage, band bending, carrier concentration,

and the electrostatic potential distribution with atomic res-

olution [1,2,4–10]. For a quantitative analysis, particularly

of the local charge-carrier concentration and redistribution, a

fundamental physical understanding and theoretical modeling

of the photoexcited tunneling spectra would be needed.

Grafström pointed out that a realistic model “should allow

the various quantities involved, such as recombination rates

and tip-induced band bending, to be identified more reliably

and should put the interpretation of spatial variations of the

measurement signal on a more solid ground”[11]. However, to

date, mostly qualitative explanations attribute the photoexcited

tunneling spectra to changes of the band bending under

illumination [4,7,8,12–17]. Reliable quantitative simulations

of and fits to photoexcited tunneling spectra are still lacking.

Prins et al. [18], Sommerhalter et al. [19], and Vu et al.

[20] developed first approaches to the problem. Prins et al.

focused on pinned surfaces with a high density of surface

gap states, but did not take into account tunneling into the

conduction and out of the valence band. Sommerhalter et al.
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modeled unpinned surfaces without surface gap states using a

one-dimensional metal-insulator-semiconductor model. Both

approximated the tunneling current with a thermionic emission

current model, which according to Sommerhalter et al.

represents a simplification compared to the earlier method

presented by Feenstra and Stroscio [21]. In addition the

one-dimensional model used by Sommerhalter et al. as well as

the planar one-dimensional GaAs-insulator-Au tunnel contact

measured and simulated by Vu et al. do not take into account

the localized nature of the STM tip, which significantly affects

the electric field distribution near the tip apex and thus band

bending [22].

In this paper we present a generally applicable and de-

tailed three-dimensional quantitative description of the effect

of illumination on the tunneling current. We use a three-

dimensional finite-difference calculation of the electrostatic

potential in a tip-vacuum-semiconductor sample system, by

solving the Poisson equation and the continuity equations for

holes and electrons. On the basis of the obtained electrostatic

potential, the different contributions to the tunneling current

are calculated using the tunneling model of Feenstra et al.

[21] but extended for tunneling of light-generated carriers.

The calculated tunnel current is compared quantitatively to

laser-excited tunneling spectra measured from GaAs(110)

surfaces. A detailed discussion of the different tunnel current

contributions with and without laser excitation is provided.

This analysis demonstrates that the modeling developed

here provides a comprehensive quantitative description of

photoexcited tunneling spectra.

II. EXPERIMENT

For the laser-excited STS experiments we used nonpolar

GaAs(110) surfaces as model system. GaAs was chosen for

simplicity, but any other semiconductor that exhibits a band

gap smaller than the photon energy of the laser can be

used, too. Samples cut from a p-doped GaAs(001) wafer
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([Zn] = (1-2) × 1018 cm−3) were freshly cleaved in situ, at a

pressure of 1 × 10−10 mbar, to obtain clean (110) surfaces. The

cleavage surfaces used for the experiments consisted of very

large atomically flat terraces separated by steps. Only a very

low, typical [23–25], defect concentration of �5 × 1010 cm−2

was present. Thus no relevant concentrations of extrinsic

surface states and hence no extrinsic pinning can be expected

[26].

The sample was illuminated with a (0.95 ± 0.05) mW diode

laser through a window flange at an angle of incidence of

(62 ± 3)◦. We used a wavelength of 785 nm (corresponding to

an energy of 1.58 eV, which is larger than the band gap). With

the help of two micrometer screws, the beam direction could

be adjusted precisely in order to hit the sample exactly at the

tip position. The focusing of the beam spot was achieved by a

built-in lens directly in front of the laser. We measured the spot

size in units of the width of the sample, which was determined

previously with a calibrated optical microscope. The smallest

focus, which we achieved was elliptical (due to the inclined

incident angle) with major and minor axes of (50 ± 10) and

(100 ± 20) µm and a roughly constant irradiance profile. The

irradiance of the laser beam was furthermore weakened by

the transmission through the lens, the window flange and

the reflection on the sample. We calculated the reflection

at the GaAs surface for an incident angle of (62 ± 3)◦ to

(30.5 ± 0.5)% and the losses at the window flange and lenses

to (7 ± 1)%. Hence, (60.1 ± 1)% of the original irradiance

is deposited in the GaAs sample. This corresponds to an

average irradiance of (1.45 ± 0.44) × 105 Wm−2. Note, the

laser irradiance and tip-sample separations (i.e., tunneling set

points) chosen represent a compromise between the magnitude

of the photo-induced tunnel current, the limitations by the

preamplifier dynamics, and the stability of the tunnel system

(i.e., to avoid changing or destroying the surface and tip apex).

Unlike many other experiments, we decided not to use

a mechanical chopper, since the laser intensity may be

influenced by a partially concealed laser beam (laser intensity

changes gradually at the chopper edges). Hence, during the

acquisition of current-voltage spectra, the laser was electrically

modulated by the STS control electronics. In contrast to

standard current-voltage spectra, we consecutively measured

the current with and without illumination at each voltage

step. Each of these steps took 1280 µs, during which first

the laser was turned on for 180 µs only to minimize

thermal drift. Second, the current without illumination was

then acquired 800 µs after turning off the laser. Impor-

tantly, the current-voltage spectra with and without illumina-

tion were hence probed at the same tip-sample separation,

which was fixed by the set voltage and current without

illumination.

We used electrochemically etched tungsten tips in our STM

measurements. The most relevant parameter for a quantitative

analysis is the radius of curvature of the tip apex. Using TEM

images we determined a radius of curvature of 10 nm for

tungsten tips etched by our setup [27]. This value is also used

in the calculation. Furthermore, tungsten tips were chosen,

since this material is known to exhibit negligible tip-enhanced

raman spectroscopy effects, since the plasmon resonance is in

deep IR, outside the range of the laser wavelength used in the

experiment [28,29].

FIG. 1. (Color online) Current-voltage spectra obtained on a p-

doped GaAs(110) surface with (red squares) and without (black

triangles) illumination for identical tip-sample separations. The set

point is −2.0 V and 150 pA (without illumination). Without laser

excitation the current at positive (negative) voltages arises from

electrons tunneling into the conduction band labeled IC (out of the

valence band, IV) [30]. The laser excitation increases the tunnel

current only at negative sample voltages. At positive voltages no

effect is detectable.

III. EXPERIMENTAL RESULTS

Figure 1 shows two current-voltage spectra obtained si-

multaneously at identical tip-sample separations using the

previously described method. The spectrum shown with

(black) triangles has been measured in dark. The (red)

squares represent the spectrum measured under illumination.

At positive voltages both spectra coincide and have identical

onset voltages of about +1.7 V. However, at negative voltages,

the current measured under illumination is higher than that

measured without light. In addition, the illumination shifts the

onset voltage of the spectrum from −0.6 V (dark) to −0.4 V

(illuminated).

The two spectra shown are representative of a larger set

of measurements done on several GaAs(110) surfaces. The

common features of these measurements are: (i) no change

of the tunnel current at positive voltages by illumination, (ii)

illumination increases the tunnel current at negative voltages,

and (iii) the onset voltage of the tunnel current at negative

voltages is always close to −0.4 V under illumination using a

laser energy of 1.58 eV (785 nm). Note, under dark conditions

the onset voltage for tunneling at negative voltages naturally

shifts downward for lower doped samples due to the increasing

band bending [31] We demonstrate the feasibility of this type

of analysis using the chosen spectra.

IV. THEORETICAL MODEL

In order to interpret laser-excited tunneling spectroscopy,

such as the example shown in Fig. 1, we recall that due
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to the negligible concentration of surface states within the

fundamental band gap and the moderate doping concentration

of 2 × 1018 cm−3, the applied electric field between the tip

and the sample is not fully screened at the surface and

penetrates into the semiconductor. This induces a so-called

tip-induced band bending [21,32,33], which is qualitatively

reduced with increasing free charge-carrier concentration

[30,31,34]. Hence, the onset voltages contain information

about the distribution of charge carriers [35,36].

Figure 1 shows that the onset voltage of the conduction band

current IC (at positive sample voltages) remains unchanged

under illumination. This is due to the upward band bending,

screened with and without illumination by the accumulation

of majority carriers at the surface. Therefore, the upward band

bending is not altered significantly and the tunnel current

remains essentially unchanged. In contrast, the onset voltage

of the valence band current IV (negative sample voltages) is

shifted toward smaller negative voltages by δVonset ≈ +0.2

V under illumination (Fig. 1). This indicates the presence of

light-excited minority carriers at the semiconductor’s surface,

whose concentration is orders of magnitude higher than that of

thermally generated minority carriers. These minority carriers,

on the one hand, can directly tunnel into the tip. On the other

hand, they may enhance the screening, reducing the downward

band bending at negative voltages under illumination and

hence increasing the valence band tunnel current. The relative

magnitude of these two effects is unclear and needs to be

investigated quantitatively. Therefore, a derivation of the

electrostatic potential, the electron concentration, and the hole

concentration as well as the calculation of the tunnel current

under illumination will be developed and illustrated in the

following.

A. Electrostatic potential and carrier distribution

As outlined above, the calculation of the tunnel current

requires the electrostatic potential distribution for a biased

metal tip-vacuum-semiconductor system. This system requires

a full three-dimensional solution of the Poisson equation,

since a one-dimensional analytical solution, as, e.g., given

by Seiwatz and Green [37] does not consider the effect of

the localized shape of the tip on the electrostatic potential. In

this section we describe the approach used for calculating the

electrostatic potential and charge-carrier distributions. For the

sake of completeness, we first recall those fundamental semi-

conductor equations that are needed for further derivations in

this work, followed by the evaluation of equations suitable for

numerical iterations.

1. System of differential equations

Thus far, Feenstra solved this kind of electrostatic problem

using a finite-difference method to iteratively solve the Poisson

equation [22]. The charge densities in the semiconductor are

assumed to follow the effective mass approximations. For the

conduction band, this approximation is given by [38]

n0 = NC

2√
π

F1/2

(

EF − EC

kT

)

, (1)

where k is the Boltzmann constant, EF is the Fermi level,

EC is the minimum of the conduction band, and F1/2 is the

Fermi-Dirac integral. NC is the effective density of states of the

conduction band, given by NC = 2(2πmeff,CkT /h2)3/2, where

h is the Planck constant and meff,C is the density of states

effective mass for electrons. For the charge density of the

valence band, the approximation is given by

p0 = NV

2√
π

F1/2

(

EV − EF

kT

)

, (2)

where EV is the maximum of the valence band. NV is the

effective density of states of the valence band given by

NV = 2(2πmeff,VkT /h2)3/2. meff,V is the effective density of

states mass for holes. Besides some material properties and

the temperature, which is assumed to be constant, the electron

and hole densities in the effective mass approximation depend

only on the position of the valence and conduction band edges

relative to the Fermi energy. Hence, these equations do not

hold for the description of additional excess carriers generated

by photon interaction.

Thus, here we additionally introduce the continuity equa-

tions for electrons and holes. This will give a more general

description of the problem, enabling the introduction of carrier

generation and recombination. Overall, it is necessary to solve

three coupled partial differential equations:

The Poisson equation for the electrostatic potential

φ(x,y,z) at the position (x,y,z) is given by

�φ(x,y,z) + e

ǫ0ǫr

[p(x,y,z) − n(x,y,z) + N+
D − N−

A ] = 0,

(3)

where e is the (unsigned) electron charge, ǫ0 is the vacuum

permittivity, ǫr is the relative permittivity of the semiconductor,

and n(x,y,z) and p(x,y,z) are the electron and hole concentra-

tions at position (x,y,z), respectively. The density of ionized

donors N+
D and acceptors N−

A are defined as [37]

N+
D = ND {1 + 2exp[(EF − ED) /kT ]}−1 , (4)

N−
A = NA {1 + 2exp[(EA − EF) /kT ]}−1 , (5)

respectively, where ND (NA) is the concentration of donors

(acceptors) and ED (EA) the respective energy level. Note that

ED and EA as well as EV and EC are shifted by eφ(x,y,z) in

the region of nonzero band bending.

Assuming a time-invariant charge distribution, the continu-

ity equations for electrons and holes are

∇ · �Jn − eR = 0, (6)

∇ · �Jp + eR = 0, (7)

where R is a time-averaged generation or recombination rate

and �Jn ( �Jp) is the current density for electrons (holes). �Jn and
�Jp can be separated into drift and diffusion terms [39]:

�Jn = e[µnn(x,y,z) �E + Dn∇n(x,y,z)], (8)

�Jp = e[µpp(x,y,z) �E − Dp∇p(x,y,z)], (9)

where µn (µp) is the mobility and Dn (Dp) is the diffusion

coefficient of electrons (holes) in the semiconductor. Dn (Dp) is

connected to µn (µp) by the Einstein relation. Note, we assume
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the mobility (and the diffusion coefficient) to be location-

independent in this calculation. Inserting Eqs. (8) and (9) into

Eqs. (6) and (7), respectively, and using the relation �E = −∇φ,

the continuity equations become

∇ · [Dn∇n(x,y,z) − µnn(x,y,z)∇φ] − R = 0, (10)

∇ · [Dp∇p(x,y,z) + µpp(x,y,z)∇φ] − R = 0. (11)

2. Difference equations

Equations (3), (10), and (11) represent a system of three

coupled partial differential equations that cannot be solved

analytically in full generality [39]. For numerical computations

we need adequate difference equations for these differential

equations. We decided to follow Selberherr’s discretization

approach of directly replacing the differential operators by the

corresponding difference operators.

The derivation of the discretized Poisson equation replacing

Eq. (3) is straightforward, since the Laplace operator has to be

replaced, only. It is given by [39]

( φi+1,j,k−φi,j,k

xi+1−xi
− φi,j,k−φi-1,j,k

xi−xi-1

xi+1−xi-1

2

+
φi,j+1,k−φi,j,k

yj+1−yj
− φi,j,k−φi,j-1,k

yj−yj-1

yj+1−yj-1

2

+
φi,j,k+1−φi,j,k

zk+1−zk
− φi,j,k−φi,j,k-1

zk−zk-1

zk+1−zk-1

2

)

+ e

ǫ0ǫr

(−ni,j,k + pi,j,k + N+
D − N−

A ) = 0. (12)

Note, since the finite-difference method uses a mesh of discrete

points (which are in general not equidistant), the continuous

physical coordinates (x,y,z) become discrete indices (i,j,k),

which are mapped to discrete physical coordinates (xi,yj,zk).

Hence, e.g., φi,j,k is an abbreviated notation for φ(xi,yj,zk).

The derivation of the discretized continuity equations for

holes and electrons is more complex and is derived in analogy

to Ref. [39] (starting on page 155) for the three-dimensional

case here. The resulting discretized continuity equation for

electrons is

B
(φi+1,j,k−φi,j,k

kT

)

ni+1,j,k − B
(φi,j,k−φi+1,j,k

kT

)

ni,j,k

(xi+1 − xi)
xi+1−xi-1

2

−B
(φi,j,k−φi-1,j,k

kT

)

ni,j,k − B
(φi-1,j,k−φi,j,k

kT

)

ni-1,j,k

(xi − xi-1) xi+1−xi-1

2

+B
(φi,j+1,k−φi,j,k

kT

)

ni,j+1,k − B
(φi,j,k−φi,j+1,k

kT

)

ni,j,k

(yj+1 − yj)
yj+1−yj-1

2

−B
(φi,j,k−φi,j-1,k

kT

)

ni,j,k − B
(φi,j-1,k−φi,j,k

kT

)

ni,j-1,k

(yj − yj-1)
yj+1−yj-1

2

+B
(φi,j,k+1−φi,j,k

kT

)

ni,j,k+1 − B
(φi,j,k−φi,j,k+1

kT

)

ni,j,k

(zk+1 − zk) zk+1−zk-1

2

−B
(φi,j,k−φi,j,k-1

kT

)

ni,j,k − B
(φi,j,k-1−φi,j,k

kT

)

ni,j,k-1

(zk − zk-1) zk+1−zk-1

2

− R

Dn

= 0,

(13)

with the Bernoulli function B(x) = x/[exp(x) − 1]. Analo-

gously, the discretized continuity equation for holes can be

found to be [39]

B
(φi,j,k−φi+1,j,k

kT

)

pi+1,j,k − B
(φi+1,j,k−φi,j,k

kT

)

pi,j,k

(xi+1 − xi)
xi+1−xi-1

2

−B
(φi-1,j,k−φi,j,k

kT

)

pi,j,k − B
(φi,j,k−φi-1,j,k

kT

)

pi-1,j,k

(xi − xi-1) xi+1−xi-1

2

+B
(φi,j,k−φi,j+1,k

kT

)

pi,j+1,k − B
(φi,j+1,k−φi,j,k

kT

)

pi,j,k

(yj+1 − yj)
yj+1−yj-1

2

−B
(φi,j-1,k−φi,j,k

kT

)

pi,j,k − B
(φi,j,k−φi,j-1,k

kT

)

pi,j-1,k

(yj − yj-1)
yj+1−yj-1

2

+B
(φi,j,k−φi,j,k+1

kT

)

pi,j,k+1 − B
(φi,j,k+1−φi,j,k

kT

)

pi,j,k

(zk+1 − zk) zk+1−zk-1

2

−B
(φi,j,k-1−φi,j,k

kT

)

pi,j,k − B
(φi,j,k−φi,j,k-1

kT

)

pi,j,k-1

(zk − zk-1) zk+1−zk-1

2

− R

Dp

= 0.

(14)

3. Boundaries and interfaces

We assume Neumann boundary conditions for both the

electrostatic potential and the charge densities. This means

that at the borders of the calculation grid in normal direction

the partial derivation of the electrostatic potential and the

current densities for electrons and holes are zero. A precise

derivation of the boundary conditions with respect to a

minimization of the truncation error is given in Ref. [39] on

page 172. Particular attention must be paid to the continuity

condition for the electrostatic potential at the surface of the

semiconductor. For a surface, which is nearly free of surface

states, the normal component of the electric displacement field
�D remains constant at the transition from the semiconductor

to the vacuum. With surface states being present within or

even outside of the fundamental band gap, a surface charge

distribution σ gives rise to a change of �D according to

Eq. (15),

�n · ( �Dvac − �Dsemi) = σ, (15)

where �n is the normal vector of the surface. Using the relation

for isotropic media �D = −ǫ0ǫr∇φ we obtain for a normal

vector in the z direction

ǫ0ǫr

∂φ

∂z

∣

∣

∣

∣

semi

− ǫ0

∂φ

∂z

∣

∣

∣

∣

vac

− σ = 0. (16)

Again, Eq. (16) can be discretized by employing difference

operators [39]. Assuming that all points z � zsurf belong to the

semiconductor, whereas all points z < zsurf belong to either the

tip or the vacuum, Eq. (12) needs to be replaced for z = zsurf
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(or k = ksurf, respectively) by

( φi+1,j,k−φi,j,k

xi+1−xi
− φi,j,k−φi-1,j,k

xi−xi-1

xi+1−xi-1

2

+
φi,j+1,k−φi,j,k

yj+1−yj
− φi,j,k−φi,j-1,k

yj−yj-1

yj+1−yj-1

2

+
ǫrǫ0

φi,j,k+1−φi,j,k

zk+1−zk
− ǫ0

φi,j,k−φi,j,k-1

zk−zk-1
+ σi,j,k

ǫrǫ0(zk+1−zk)+ǫ0(zk−zk-1)

2

)

− e

ǫ0ǫr

zk − zk-1

ǫr (zk+1 − zk) + (zk − zk-1)

× (ni,j,k − pi,j,k − N+
D + N−

A ) = 0. (17)

In the region of the semiconductor, Eqs. (12) (for z >

zsurf), (17) (for z = zsurf), (13), and (14) have to be solved,

whereas in the region of the vacuum only Eq. (12) has to

be solved due to the absence of charge carriers. At the tip

the electrostatic potential φtip is set to a constant value, the

so-called contact potential �φ [40]. It can be interpreted as

the potential difference between the tip and the surface of the

semiconductor,

φtip = �φ = V + (EF − EC − χ + φm) /e, (18)

where V is the voltage applied between the tip and the

semiconductor, χ is the electron affinity of the semiconductor,

and φm is the work function of the tip.

4. Initial values

For the initial values of the electrostatic potential φ0
i,j,k and

the charge densities n0
i,j,k and p0

i,j,k within the semiconductor,

one assumes that the tip is located infinitely far away from

the semiconductor’s surface. Hence, the semiconductor is

initialized without tip-induced band bending and with equally

distributed carrier concentrations:

φ0
i,j,k = 0 V

n0
i,j,k = n0 + clight

p0
i,j,k = p0 + clight















for k � ksurf. (19)

n0 and p0 (together with EF) can be easily obtained by solving

the charge neutrality condition n0 − p0 − N+
D + N−

A = 0,

when the semiconductor is in equilibrium. The initial density

of the light-excited carriers clight can be estimated using

clight = α
Popt

EphAlight

τ, (20)

where α is the absorption coefficient of the semiconductor, τ

is the lifetime of the minority carriers, Alight is the illuminated

surface area, Popt is the optical power of the laser, and Eph

is the photon energy. One could also take into account that

Popt depends exponentially on the penetration depth of the

photons. However, in p-type GaAs with α ∼ 1 × 104cm−1 for

Eph = 1.58 eV [41], the change of Popt in the region of interest

is in the range of only a few percent and hence can be neglected.

For the given problem, one could have chosen other initial

values that promise to converge faster to the optimal solution.

For example, one could have estimated the tip-induced band

bending within the semiconductor and used these values for

φ0
i,j,k. However, in practice, the approach given by Eq. (19)

delivers good results.

5. Carrier generation and recombination

The generation and recombination process is modeled

by radiative band-to-band transitions. Since GaAs exhibits

a direct band gap, this recombination process is taken to

be dominant. The net recombination rate Rte in thermal

equilibrium and without illumination is given by [42]

Rte(x,y,z) = b[n(x,y,z)p(x,y,z) − n0p0], (21)

where b is the bimolecular recombination coefficient. When

the laser is switched on, electron-hole pairs will be created with

a rate of Rlight = clight/τ . In the absence of the tip-induced band

bending (i.e., without a potential gradient for the carriers), a

second equilibrium situation will be reached, when the net

recombination rate equals Rlight:

b[(n0 + clight)(p0 + clight) − n0p0] = Rlight. (22)

With the help of Eqs. (20) and (22), b can be determined

and, finally, the net recombination rate R for the sample under

illumination, suitable for the substituion in Eqs. (13) and (14),

is given by

R(x,y,z) = b[n(x,y,z)p(x,y,z) − n0p0] − Rlight. (23)

6. Numerical iteration method

The numerical iteration method used to solve Eqs. (12),

(13), (14), and (17) should be discussed briefly. Although there

exist many different approaches for the numerical solution

of this system of nonlinear algebraic equations, we decided

to use a successive over relaxation (SOR) Newton method

because of the easy implementation and the advantage that

Eqs. (12), (13), and (14) can be sequentially used to find

the solution [39]. A derivation of this and other methods in

detail is, for example, given by Selberherr [39]. Identifying

Eqs. (12), (13), and (14) with F1(φ,n,p) = 0, F2(φ,n,p) = 0,

and F3(φ,n,p) = 0, respectively, the variation of the variables

δφk = φk+1 − φk, δnk = nk+1 − nk, and δpk = pk+1 − pk of

the kth iteration step of the SOR Newton method are evaluated

by [39]

δφk,m+1 = −ωF1(φk,nk + δnk,m,pk + δpk,m)

∂F k
1

∂φ

,

δnk,m+1 = −ωF2(φk + δφk,m+1,nk,pk + δpk,m)

∂F k
2

∂n

,

δpk,m+1 = −ωF3(φk + δφk,m+1,nk + δnk,m+1,pk)

∂F k
3

∂p

,

(24)

where ω is a relaxation parameter. This means that an “inner”

iteration (index m) has to be performed for each Newton

step k.

7. Design of the mesh

In order to obtain the potential near the surface with the

required spatial accuracy, rather small distances between the

points of the mesh used in the finite-difference calculation

are needed (on the order of 0.1 nm). However, for lower

doped semiconductors the band bending may extend deep
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FIG. 2. (Color online) (a) Three-dimensional view of a mesh,

similar to that used in our computations. The mesh points are

located at the intersections of the lines. For the sake of clarity,

the mesh consists only of one-eighth of the mesh points used in

our computation. Additionally, the points in the vacuum are hidden.

(b) Cross-sectional view of the central y-z plane (isometric projec-

tion) including the mesh points in the vacuum.

into the semiconductor (up to µm). Hence, the mesh needs

to cover a volume large enough to include the full decay of

the potential. In principle one could use a fully equidistant

mesh, but the number of points needed would make the

calculation impractical. At large distances (x, y, and z) from

the semiconductor surface area facing the tip, the potential

changes almost linearly and hence the points of the mesh can

be increasingly separated in space. Along all three directions,

we use equidistant points close to the surface area facing the

tip. At larger distances we increase the point separation of

the mesh, until the mesh volume is sufficiently large. Figure

2(a) illustrates a three-dimensional view of a mesh similar to

that used in our computations. The mesh points are located

at the intersections of the lines. For the sake of clarity, the

mesh consists only of one-eighth of the mesh points used in

our computation. Additionally, the points in the vacuum are

hidden. Figure 2(b) represents a cross-sectional view along the

central y-z plane (including mesh points in the vacuum). The

truncation errors of the electrostatic potential and the carrier

concentration due to the choice of the mesh are discussed

in Ref. [39]. This mesh provides a full three-dimensional

finite-difference calculation, where any tip shape can be

modeled. It is not limited to hyperbolically shaped tips [22].

B. Calculation of the tunnel current

The calculation of the tunnel current density is based on

the tunneling model developed in Refs. [21,43]. The current

density is given by

Ji = mee

2π2�3

∫ EF

EF+eV

dE 
(±[E − Ei])

×
∫ E

E(1∓meff,i)±meff,iEi

dW D (W ) , (25)

where 
(E) is the step function. D(W ) is the energy (W )-

dependent transmission coefficient in the WKB approximation

given in Ref. [21]. It depends on the band-edge energies,

obtained from the solution of the Poisson equation, along

the axis perpendicular to the sample surface (z axis in the

electrostatic calculation), through the tip apex.

This equation covers the tunneling of electrons out of the

valence band (i = V) and out of an electron accumulation zone

in the conduction band (i = C) into the empty tip states as well

as of electrons in the tip into the empty conduction band states

(i = C) or into a hole accumulation zone in the valence band

(i = V). The total tunnel current I is the sum of all current

density contributions Ji [see Eq. (25)] multiplied by the tunnel

area Atunnel [40]:

I = (JV + JC) × Atunnel. (26)

This approach assumes parabolic bands and does not incor-

porate the tunneling of light-excited carriers. Hence, the model

is extended here in order to incorporate the concentrations of

both minority and majority carriers (including light-excited

carriers) obtained from the solution of the continuity equations.

From these carrier concentrations we derive the quasi-Fermi

levels EFQ,C and EFQ,V, at the surface. EFQ,C (EFQ,V) is the

upper (lower) limit for the energy of the electrons (holes) in

the conduction band (valence band) in the limit of T = 0 K.

These electrons (holes) can tunnel from the conduction band

(valence band) into the tip. Hence, the quasi-Fermi levels

replace the upper limit of the first integral in Eq. (25).

The quasi-Fermi levels have to be determined precisely,

because they affect critically the tunnel current density.

Calculating the quasi-Fermi levels EFQ,i on the basis of Eqs. (1)

and (2) using the carrier densities n(x,y,z) and p(x,y,z)

is only accurate enough for moderate carrier concentrations

[n (x,y,z) < NC and p (x,y,z) < NV], since the conduction

band dispersion deviates from its parabolic approximation

almost directly at EC.

Hence, for higher carrier concentrations we need to

integrate the calculated density of states [DOS(E)] of the

investigated semiconductor (i.e., GaAs), e.g., taken from

Chelikowsky and Cohen [44,45],

n′ =
∫ ∞

EC

dEDOS(E)fS(E − EFQ,C), (27)

p′ =
∫ EV

−∞
dEDOS(E)fS(EFQ,V − E), (28)

and numerically solve these integrals for EFQ,i, such that n′ (or

p′) equals the carrier concentration n(x,y,z) [or p(x,y,z)] at

the surface below the tip apex. The Fermi-Dirac distribution of

the semiconductor fS(E) is approximated by a step function

here. The same approximation is already used in the derivation

of the tunnel current [Eq. (25)] and hence does not restrict the

validity further [43].

Additionally, the effective masses meff,i of the holes and

electrons are taken to be energy-dependent. By substituting

EFQ,C (EFQ,V) and n(x,y,z) [p(x,y,z)] into Eq. (1) [Eq. (2)], it

can be solved for new quasieffective masses meffq,C (meffq,V),

replacing meff,C (meff,V). The resulting quasieffective masses

and quasi-Fermi levels are then used to calculate the tunnel

current density.
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V. RESULTS AND DISCUSSION

In this section, the measured spectra, as illustrated in

Fig. 1, are analyzed and discussed. The quantitative description

presented in Sec. IV is applied to compute the tunnel currents

under different physical assumptions and parameters as well as

with and without illumination. The results of the computation

are fitted to the measured spectra, in order to test the validity

of the quantitative description of photoexcited STS.

For the particular case of the GaAs(110) surface, a quan-

titative physical explanation of the measured tunnel spectra

requires the inclusion of intrinsic surface states energetically

located within the bands. The physical effect of the surface

states on the illuminated tunneling spectra is described with

two different models. For both models the tunnel currents are

computed and fitted to the measured spectra, followed by a

comparative discussion.

A. Effect of GaAs(110) surface states on the tunnel spectroscopy

At this stage we recall first the origin of the relevant tunnel

current contributions followed by a discussion of the effect

of surface states. Electrons can tunnel from the valence band

into the tip, if the energy of the highest occupied state of

the tip (EF,tip = EF + eV ) is below the bulk valence band

edge of the semiconductor. On the other hand, if EF,tip is

energetically above the bulk conduction band edge, tunneling

of electrons from the tip into the conduction band is possible.

These two processes usually form the main contributions of the

tunnel current, denoted by IV and IC, respectively. In addition,

an accumulation current Iacc can occur for n-type (p-type)

semiconductors, if the conduction (valence) band is bent below

(above) EF near the surface (majority-carrier accumulation)

[30]. For n-type surfaces the accumulation current arising from

the electron accumulation zone in the conduction band Iacc was

derived to be at least one order to magnitude larger than IV.

However, this was not confirmed by measurements on n-doped

GaAs(110) surfaces [30]. Jäger et al. [30] and Ishida et al. [46]

explained this discrepancy by the presence of surface states.

The GaAs(110) surface has two relevant intrinsic surface

states located energetically within the bands. The filled one

is close to the valence band edge and corresponds to the

dangling bond above the As surface atoms. It is commonly

labeled A5 and has its energetic maximum at the Ŵ point of

the surface Brillouin zone. The empty one is also a dangling

bond state, but localized above the Ga surface atoms. It is

energetically slightly above the conduction band edge with

its minimum at the edge of the surface Brillouin zone (X

point). It is commonly labeled C3 [47–49]. All other surface

states are deeper within the bands and hence not relevant here

[47,50–52]. For the explanation of the discrepancy between

measured and calculated accumulation current Iacc, only the

empty C3 surface state is important: Jäger et al. suggested that

the accumulation current is suppressed, because the tip cannot

accommodate conduction band electrons tunneling out of the

empty C3 surface state due to the nonzero parallel momentum

[30]. Ishida et al. assumed in addition that the C3 surface state

can be partially filled, effectively pinning the Fermi level. This

reduces the charge density in the accumulation layer and hence

the magnitude of Iacc [46].

Measurements in this paper were performed on p-doped—

not on n-type—GaAs(110) surfaces. The p-type GaAs(110)

surface exhibits a Fermi level near the valence band edge.

Without illumination, the minority-carrier concentration is

too low to support an inversion layer (i.e., “accumulation”

of electrons in the conduction band) near the surface under

tunneling conditions [30]. Hence, in the dark no current could

be supported from electrons tunneling out of the conduction

band. The situation changes under illumination, when light-

excited electrons are generated. These electrons behave like

thermally excited electrons in the conduction band of an n-type

sample. Thus, for p-type samples, a tunnel current similar to

the accumulation current Iacc on an n-type sample arises from

the tunneling of light-excited electrons out of the conduction

band at negative sample voltages. This photo-induced tunnel

current is denoted Iphoto in the following (not to be confused

with the current arising from the photoelectric effect).

In analogy to the explanations of the suppressed accumula-

tion current on n-type GaAs(110) in the dark [30,46], we model

the photoinduced tunnel current under two different physical

conditions: full suppression of the accumulation current and

hence the photoinduced tunnel current and a reduced electron

accumulation due to surface-state-limited band bending.

B. Parameters of the calculation

For the calculations we assumed a hyperbolically shaped

tip with a radius of curvature of 10 nm, an apex angle of

45◦, and a work function of 4.5 eV. For the GaAs sample we

used a p-type doping of 2 × 1018 cm−3, an electron affinity of

4.07 eV, and bulk effective masses. The tip-sample separation

was used as the only fitting parameter to adjust the calculated

tunnel current to the measurement under dark conditions. The

best fit was obtained for a tip-sample separation of 0.925 nm.

The same value was used for all further calculations under

illumination, since the spectra were measured at identical tip-

sample separations. For the light-excited charge carriers we

used a minority-carrier lifetime of 5 × 10−9 s for Zn-doped

GaAs following Ref. [53] as well as hole and electron mobility

values of 150 and 2400 cm2V−1s−1, respectively [54]. The

irradiance of the incident laser beam was used as the only fitting

parameter for the calculation of the illuminated curves. The

best fit values will be then compared with the experimentally

used laser irradiance.

C. Results of the calculation

1. Full suppression of electron tunneling from the conduction

band accumulation layer

We assume in this section that the light-excited carriers

in the conduction band of our p-type GaAs(110) sample

cannot tunnel into the tip (Iphoto = 0). The computational

results are presented in Figs. 3–5. Figure 3 illustrates the

band edge positions at the central axis through the tip as

a function of the distance from the semiconductor surface

for voltages of (a) −1.0 V and (b) +1.6 V without (dashed

lines) and with (solid lines) illumination. Figures 4 and 5 show

cross-sectional two-dimensional plots of (a) the electrostatic

potential, (b) the electron concentration, and (c) the hole

concentration through the central y-z plane for −1.5 V and
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FIG. 3. (Color online) Calculated valence (EV) and conduction

(EC) band-edge positions as a function of the distance from the

semiconductor’s surface for (a) negative (−1.0 V) and (b) positive

(+1.6 V) voltages applied to the sample. The band-edge positions were

calculated on the assumption that the surface states do not influence

the band bending. The sample is shown on the right side at positive

distance values. The Fermi energy (EF) is close to the valence band

edge in the bulk. The tip with its Fermi energy at EF + eV is shown on

the left side. The dark blue (light blue) areas represent filled (empty)

states. The band gap and the vacuum gap (tunnel barrier) between

the surface (at 0 nm) and the tip position (at −0.925 nm) are shown

in white. Dashed lines show the semiconductor’s band edges without

illumination, while solid lines correspond to the illuminated case.

Note the reduced band bending under illumination.

+1.5 V, respectively, without (left frames) and with (central

frames) illumination. The results correspond to the best fit

of the model of full suppression of the photoinduced tunnel

current to the experimental data, using an irradiance of the

laser of (22 ± 5) × 105 Wm−2. Note that the calculated tunnel

current for the best-fitting solution will be shown and discussed

in Sec. V D.

For negative voltages and under illumination, light-excited

electrons accumulate near the surface [see Fig. 4(b2)]. The

electron concentration near the surface locally reaches 6 ×
1020 cm−3. Note the color scale of the electron concentration

in Fig. 4(b2) is reduced by a factor of 5 × 10−2 compared

to the scale on the right side of Fig. 4(b3). This is 300

times larger than the hole concentration in the bulk. Under

dark conditions [see Fig. 4(b1)], almost no free electrons are

present and hence the density of electrons accumulating at

the surface is almost zero, approximately a factor of 1016

smaller than under illumination. [Note the color scale of the

electron concentration in Fig. 4(b1) is enhanced by a factor

of 5 × 1014 to visualize the distribution.] In contrast, the hole

concentration changes only slightly, when the laser is turned

on [Figs. 4(c1) and 4(c2)]. The accumulated photoinduced

electrons are screening the tip-induced band bending. The

combined effect on the electrostatic potential φ is illustrated

in Figs. 4(a1), 4(a2), and 3(a). For example, at an applied
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FIG. 4. (Color online) Cross-sectional plots of (a) the electrostatic potential φ of the tip-vacuum-semiconductor system, (b) the electron

concentration n, and (c) the hole concentration p (in the semiconductor only) for a sample voltage of −1.5 V without illumination (left

column), with illumination and no tunneling of photoinduced electrons in the surface accumulation layer IPhoto = 0 (central column), and with

illumination, photoinduced tunnel current, and surface-state limited band bending (right column). The equipotential lines in (a) range from

−0.1 V to −0.8 V in steps of 0.1 V.
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FIG. 5. (Color online) Cross-sectional plots of (a) the electrostatic potential φ of the tip-vacuum-semiconductor system, (b) the electron

concentration n, and (c) the hole concentration p (in the semiconductor only) for a sample voltage of +1.5 V without illumination (left

column), with illumination and no tunneling of photoinduced electrons in the surface accumulation layer IPhoto = 0 (central column), and with

illumination, photoinduced tunnel current, and surface-state limited band bending (right column). The equipotential lines in (a) range from

0.03 to 0.08 V in steps of 0.01 V.

voltage of −1.0 V, φ decreases from −0.59 to −0.37 V when

the sample is exposed to laser light. The reduced potential will,

according to Eqs. (25) and (26), lead to an increased valence

band tunnel current IV in accordance with the experimental

observation (Fig. 1).

For positive voltages, the screening is primarily determined

by the thermally generated holes (accumulating at the surface)

[Figs. 5(c1) and 5(c2)], since the concentration of light-excited

holes is almost two orders of magnitude lower. The light-

excited electrons move away from the surface [Figs. 5(b1) and

5(b2)]. Hence, the electron concentration near the surface is

small, regardless of whether the laser is switched on or off.

Thus, no significant change in the tip-induced band bending

can be observed for the dark and illuminated cases in Figs.

3(b), 5(a1), and 5(a2). In consequence, no change in the

tunnel current occurs at positive voltages in agreement with

the experimental observation.

2. Surface-state-limited band bending

In this section, we assume that (i) the light-excited electrons

can partially occupy the empty C3 surface state, but a direct

tunneling out of the surface state is negligible [20], and (ii)

light-excited carriers can tunnel out of the conduction band

(|Iphoto| > 0). In analogy to Ref. [46] the C3 surface state is

modeled by a Gaussian distribution peaking at an energy ESS of

0.33 eV above the conduction band minimum with a FWHM of

0.25 eV. We assume a surface state density of 4.4 × 1014 cm−2,

corresponding to one state per surface cation [46]. The surface

state is electrically neutral, if it is positioned completely above

the quasi-Fermi level of the conduction band (EFQ,C). For

positive voltages and thus upward band bending, the surface

state will remain unoccupied and the band bending does not

change. For negative voltages and downward band bending,

the tail of the Gaussian distribution will move below the

quasi-Fermi energy and thus create a negative surface charge

distribution. This additionally screens the tip-induced band

bending and hence reduces the bulk electron concentration

near the surface. The resulting band-edge positions EV and

EC are shown in Fig. 6 as a function of the distance from

the surface. For comparison with the previously discussed

model, the cross-sectional plots of the potential as well

as electron and hole distributions are shown in the right

columns of Figs. 4 and 5 for −1.5 and +1.5 V, respectively.

Again, the screening arises from electrons filling the surface

state and accumulating near the surface at negative voltages

and from holes accumulating near the surface at positive

voltages. The photoinduced tunnel current Iphoto arises from

photoexcited electrons in the conduction band, as indicated in

Fig. 6(a).

Figure 7 shows the band edge positions EV and EC at the

surface as a function of the applied voltage under illumination.
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FIG. 6. (Color online) As described in the legend for Fig. 3, but

calculated assuming that the empty surface state is partially filled and

hence limits the tip-induced band bending. Shown are the band-edge

positions under illumination (solid lines) and under dark conditions

(dashed lines). IPhoto indicates the photo-induced tunnel current.

The quasi-Fermi levels EFQ,V and EFQ,C are drawn as dotted

lines. The peak position of the Gaussian distribution of the C3

state is drawn as a solid line and denoted ESS. For the purpose

of illustration an energy interval of 4σ around ESS indicates

the energetic width of the surface state. The occupied part of

the distribution is marked as light pink area. Note that a partial

occupation of the surface state is already sufficient to limit the

tip-induced band bending.

Hence, in this model, the change of the tunnel current

between the illuminated and dark case is caused by the

limited band bending and the tunneling of light-excited

electrons from the conduction band into the tip. The best

fit of the surface state-limited band bending model to the

experimental data is achieved using an irradiance of the laser

of (1+0.7
−0.3) × 105 Wm−2.
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FIG. 7. (Color online) Band edge positions EV and EC at the

surface as a function of the applied voltage under illumination. The

quasi-Fermi levels EFQ,V and EFQ,C are drawn as dotted lines. The

peak position of the Gaussian distribution is denoted ESS, while an

energy interval of 4σ around ESS indicates the energetic extension of

the surface state. The occupied part of the distribution is marked in

light pink.

FIG. 8. (Color online) I-V curves obtained from a p-type GaAs

sample with (red squares) and without (black triangles) illumination

compared to computational results (solid and dashed lines). The fit

of the current for dark conditions is represented by the black solid

curve. The red solid line was calculated assuming full suppression of

electron tunneling from the conduction band accumulation layer. The

tunnel current at negative voltages arises from electrons tunneling out

of the valence band only. The blue solid line shows the tunnel current

for the case of the surface-state-limited band bending. Here the tunnel

current is composed of a valence band current and a photoinduced

tunnel current. The red dashed line was calculated using the same

parameters as for the red solid curve, but assuming tunneling out of

the photoexcited conduction band accumulation layer. Similarly, the

blue dashed curve corresponds to a tunnel current, which was derived

for the same parameters as for the blue solid curve, but assuming

that the surface state cannot be electrically charged. The blue and red

solid lines fit well to the experimental data, but require significantly

different irradiance levels, given in the table (inset). Note, all the

calculated spectra coincide at positive voltages and are shown as

overlapping red-blue dashed line.

D. Comparison of the calculated and measured tunnel currents

Figure 8 shows the measured spectra under dark (black

triangles) and illuminated (red squares) conditions taken from

Fig. 1 together with the calculated currents (lines) under

different conditions. First we concentrate on the spectra under

dark conditions. The calculated current, which is shown as a

black solid line, represents the best fit using only the tip-sample

separation as a fitting parameter (0.925 nm). This tip-sample

separation is a reasonable value for STM operation. Note

that the calculated tunnel current under dark conditions is

identical for both models. Good agreement is found between

the onset voltages of the calculated black solid curve and of

the experimental data (triangles).

At this stage, the criteria for the best fit need to be briefly

discussed: The theoretical foundation of the tunnel current

calculation is most accurate for the smallest voltages, i.e., at

the onset voltages. In addition, the onset voltages of the tunnel

current are also experimentally the most accurate features.

Therefore, we chose those fits, which reproduce best the onset
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voltages and the initial current slope near the onset voltages.

The deviation of the calculated curve from the measured

data points at larger magnitudes of voltage is due to the

nonparabolic bands at larger energies [55].

Under illumination, the tunnel current was fitted using the

irradiance of the laser beam as the only fitting parameter.

The tip-sample separation of 0.925 nm determined from the

dark spectrum was kept constant, since the pair of dark and

illuminated experimental spectra were measured at identical

separations. The best fit of the calculated current, assuming full

suppression of the photoinduced tunnel current, is shown as a

solid red curve in Fig. 8. Note, the current at positive voltages

is independent of the illumination and hence all the calculated

curves coincide in this voltage range. The result matches the

current and the onset voltages of the measured spectrum under

illumination on the positive and negative branch.

In order to illustrate the magnitude of the photoinduced

tunnel current, if not suppressed, the red dashed line was

derived using the same laser irradiance as for the red solid

curve, but assuming now that the photoinduced electrons

can tunnel. The resulting total current is dominated by the

photoinduced tunnel current and is more than one order of

magnitude larger than the measured one. Note, the onset

voltage for the negative branch is moved to a small positive

voltage of 0.3 V. Electrons tunneling out of the sample already

at positive voltages have been indeed experimentally observed

previously for large laser irradiance [18,19].

The blue solid curve in Fig. 8 shows the best fit of

the calculated current employing surface state-limited band

bending including a photoinduced tunnel current (tunneling

of light-excited electrons accumulated at the surface). It also

agrees well with the measured spectrum, but the best fit is

obtained for a significantly lower laser irradiance as compared

to the red curve (see discussion below).

Finally, for illustration purposes only, we briefly discuss

the case that the surface state cannot be occupied by electrons,

although there is no experimental or theoretical evidence that

the surface state cannot be charged when dragged below the

Fermi energy at negative sample voltages. The absence of

surface charges screening the electric field is in this case

compensated by the accumulation of additional light-excited

electrons at the surface. This leads to a slightly higher

photoinduced tunnel current at large voltages, but similarly

well fitting at small voltages (see blue dashed line in Fig.

8). The reduction of the current by surface state limited band

bending is hence already detectable at the present small laser

irradiance, but its effect should be much more pronounced at

larger laser irradiances.

E. Comparison and discussion of the models

The solid blue and red lines in Fig. 8 demonstrate that

both physically relevant models describe the slope, shape, and

onset voltages of the measured spectrum under illumination

on the positive and negative branch well. However, we can

discriminate physically these different models on the basis of

the laser irradiance: The best-fitting irradiance was found to

be smaller for the surface-state-limited band-bending model

[(1+0.7
−0.3) × 105 Wm−2] as compared to (22 ± 5) × 105 Wm−2

for the full suppression model of the photoinduced tunnel

current.

The experimentally used laser irradiance (given in Sec. II)

was (1.45 ± 0.44) × 105 Wm−2. This value agrees well only

with the irradiance obtained using the surface-state-limited

band-bending model including the photoinduced tunnel cur-

rent. Experimentally, the laser irradiance required for the other

model was not reached, and hence it can be discarded.

The comparison of the two models further demonstrates

that the increased tunnel current due to laser illumination is

not primarily due to an enhanced screening by photoinduced

carriers. Instead the increased tunnel current arises primarily

from direct tunneling of photoexcited minority carriers to the

tip. An increased current solely due to enhanced screening

without tunneling of photoexcited carriers would require much

larger laser irradiances than the experimentally used one.

VI. CONCLUSIONS

A quantitative description of photoexcited scanning tun-

neling spectroscopy is developed and applied to experimental

data measured on a p-doped GaAs(110) surface. The potential

and charge-carrier distributions within the photoexcited tip-

vacuum-semiconductor system is described by the Poisson

as well as the hole and electron continuity equations, which

are solved by a finite-difference algorithm. On the basis of

the calculated potential and charge-carrier distributions, the

different contributions to the tunnel current are calculated.

Due to the presence of nonequilibrium charge carriers, the

calculation of the tunnel current requires an extension of

the tunnel current model of Feenstra and Stroscio, in order

to include the quasi-Fermi levels of the light-excited carrier

concentrations. For the GaAs(110) surface, the calculated

tunnel currents for different physical models with and without

illumination are fitted to the experimental data. The best fit

is obtained for a tip-induced band bending, which is limited

by the partial occupation of the empty C3 surface state in

the conduction band with light-excited electrons. The tunnel

current at negative voltages is then composed of a valence

band contribution and a photoinduced tunnel current of excited

electrons in the conduction band. At positive voltages the

tunneling of electrons into the conduction band dominates.

The quantitative description of the tunnel current under

laser illumination developed here is generally applicable

with few limitations only, which can, however, be easily

accommodated. For example, semiconductors with complex

band structures (e.g., indirect band gap) may require a more

general form of the tunnel current [Eq. (25)] and in case of low

carrier mobilities different carrier recombination processes

may have to be considered [Eq. (23)]. Similarly, for the

surface state a more elaborate model may be needed if the

physical relevant part of its dispersion is not at the minimum

(or maximum) (e.g., as for half-filled midgap surface states).

How can the quantitative description developed here be

applied to other materials? Excited charge carriers are partic-

ularly relevant in solar cell structures and in light-emitting

devices, where the spatial distribution of charge carriers,

e.g., at defects and interfaces, is critically affecting the effi-

ciency. In order to measure local charge-carrier distributions

quantitatively with (preferably) atomic resolution by STM,
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one needs to correlate the tunnel current with the excited

charge-carrier concentrations. The quantitative description

developed here closes this gap, by putting the interpretation

of photoexcited (as well as nonexcited) tunneling spectra of

many different systems on a solid quantitative foundation.

By fitting the calculated tunnel current to tunneling spectra

with light-excited carriers using as reference spectrum the

simultaneously measured dark spectrum, we obtain the best

fit value of the laser irradiance, which is directly connected to

the charge-carrier concentration. Thereby, we can extract from

the pairs of dark and illuminated tunneling spectra the locally

present excited charge-carrier concentration. By doing this

spatially resolved one may ultimately derive maps of the local

excited charge-carrier concentration. Hence, the quantitative

description developed here promises to reach significantly

deeper physical insight in the physical processes and behavior

of excited charge carriers in semiconducting materials.
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[35] N. D. Jäger, K. Urban, E. R. Weber, and Ph. Ebert, Appl. Phys.

Lett. 82, 2700 (2003).

[36] P. H. Weidlich, R. E. Dunin-Borkowski, and Ph. Ebert, Phys.

Rev. B 84, 085210 (2011).

[37] R. Seiwatz and M. Green, J. Appl. Phys. 29, 1034 (1958).

[38] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd

ed. (Wiley-Interscience, New York, 2007).

[39] S. Selberherr, Analysis and Simulation of Semiconductor De-

vices (Springer, Vienna/New York, 1984).

[40] R. M. Feenstra, Y. Dong, M. P. Semtsiv, and W. T. Masselink,

Nanotechnol. 18, 044015 (2007).

235305-12



QUANTITATIVE DESCRIPTION OF PHOTOEXCITED . . . PHYSICAL REVIEW B 91, 235305 (2015)

[41] H. C. Casey, D. D. Sell, and K. W. Wecht, J. Appl. Phys. 46,

250 (1975).

[42] R. A. Smith, Semiconductors (Cambridge University Press,

Cambridge, 1959).

[43] J. Bono and R. H. Good, Surf. Sci. 175, 415 (1986).

[44] J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

[45] J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 30, 4828

(1984).

[46] N. Ishida, K. Sueoka, and R. M. Feenstra, Phys. Rev. B 80,

075320 (2009).

[47] J. Chelikowsky and M. Cohen, Solid State Commun. 29, 267

(1979).

[48] J. Chelikowsky and M. Cohen, Solid State Commun. 30, 819

(1979).

[49] H. Carstensen, R. Claessen, R. Manzke, and M. Skibowski,

Phys. Rev. B 41, 9880 (1990).

[50] Ph. Ebert, B. Engels, P. Richard, K. Schroeder, S. Blügel, C.
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