000202130 001__ 202130
000202130 005__ 20240711113516.0
000202130 0247_ $$2doi$$a10.1016/j.jnucmat.2014.12.008
000202130 0247_ $$2ISSN$$a0022-3115
000202130 0247_ $$2ISSN$$a1873-4820
000202130 0247_ $$2tecpub$$atecpub:2006
000202130 0247_ $$2WOS$$aWOS:000358467200112
000202130 037__ $$aFZJ-2015-04419
000202130 082__ $$a530
000202130 1001_ $$0P:(DE-HGF)0$$aPotzel, S.$$b0$$eCorresponding Author
000202130 245__ $$aFormation of the high density front in the inner far SOL at ASDEX Upgrade and JET
000202130 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000202130 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435732429_1776
000202130 3367_ $$2DataCite$$aOutput Types/Journal article
000202130 3367_ $$00$$2EndNote$$aJournal Article
000202130 3367_ $$2BibTeX$$aARTICLE
000202130 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202130 3367_ $$2DRIVER$$aarticle
000202130 520__ $$aThis article presents the development of a region of high electron density, being one order of magnitude larger than the separatrix density, in the inner divertor of ASDEX Upgrade (AUG) and JET. The high-field side high density (HFSHD) occurs about 10×λq10×λq away from the separatrix and about 20 cm above the X-point. To trigger the HFSHD, the inner divertor has to be detached while the outer one remains attached and the heating power has to be sufficiently high. The HFSHD, determined independently from spectroscopic and interferometric measurements, is clearly correlated with neutral fluxes in the far scrape-off layer; both increase with heating power. Injection of N2 into the divertor private flux region suppresses the HFSHD in AUG and JET. The density distribution in the divertor with and without N2 seeding is consistent with the total radiation and the DγDγ distribution.
000202130 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000202130 588__ $$aDataset connected to tecpub, CrossRef, juser.fz-juelich.de
000202130 7001_ $$0P:(DE-HGF)0$$aWischmeier, M.$$b1
000202130 7001_ $$0P:(DE-HGF)0$$aBernert, M.$$b2
000202130 7001_ $$0P:(DE-HGF)0$$aDux, R.$$b3
000202130 7001_ $$0P:(DE-Juel1)166412$$aReimold, F.$$b4
000202130 7001_ $$0P:(DE-HGF)0$$aScarabosio, A.$$b5
000202130 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b6
000202130 7001_ $$0P:(DE-Juel1)6806$$aClever, M.$$b7
000202130 7001_ $$0P:(DE-Juel1)130040$$aHuber, A.$$b8
000202130 7001_ $$0P:(DE-HGF)0$$aMeigs, A.$$b9
000202130 7001_ $$0P:(DE-HGF)0$$aStamp, M.$$b10
000202130 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2014.12.008$$gVol. 463, p. 541 - 545$$p541 - 545$$tJournal of nuclear materials$$v463$$x0022-3115$$y2015
000202130 8564_ $$uhttps://juser.fz-juelich.de/record/202130/files/1-s2.0-S0022311514009490-main-1.pdf$$yRestricted
000202130 8564_ $$uhttps://juser.fz-juelich.de/record/202130/files/1-s2.0-S0022311514009490-main-1.gif?subformat=icon$$xicon$$yRestricted
000202130 8564_ $$uhttps://juser.fz-juelich.de/record/202130/files/1-s2.0-S0022311514009490-main-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202130 8564_ $$uhttps://juser.fz-juelich.de/record/202130/files/1-s2.0-S0022311514009490-main-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202130 8564_ $$uhttps://juser.fz-juelich.de/record/202130/files/1-s2.0-S0022311514009490-main-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202130 8564_ $$uhttps://juser.fz-juelich.de/record/202130/files/1-s2.0-S0022311514009490-main-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202130 909CO $$ooai:juser.fz-juelich.de:202130$$pVDB
000202130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166412$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000202130 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000202130 9130_ $$0G:(DE-HGF)POF2-135$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-wall interactions$$x0
000202130 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000202130 9141_ $$y2015
000202130 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202130 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202130 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202130 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202130 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202130 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202130 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202130 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000202130 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000202130 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000202130 980__ $$ajournal
000202130 980__ $$aVDB
000202130 980__ $$aI:(DE-Juel1)IEK-4-20101013
000202130 980__ $$aUNRESTRICTED
000202130 981__ $$aI:(DE-Juel1)IFN-1-20101013