001     202148
005     20240712100959.0
024 7 _ |2 doi
|a 10.5194/acp-15-6745-2015
024 7 _ |2 ISSN
|a 1680-7316
024 7 _ |2 ISSN
|a 1680-7324
024 7 _ |2 Handle
|a 2128/8942
024 7 _ |a WOS:000357117500012
|2 WOS
037 _ _ |a FZJ-2015-04437
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)16346
|a Mentel, T. F.
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes – deduced from structure–product relationships
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435733970_3520
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a It has been postulated that secondary organic particulate matter plays a pivotal role in the early growth of newly formed particles in forest areas. The recently detected class of extremely low volatile organic compounds (ELVOC) provides the missing organic vapors and possibly contributes a significant fraction to atmospheric SOA (secondary organic aerosol). The sequential rearrangement of peroxy radicals and subsequent O2 addition results in ELVOC which are highly oxidized multifunctional molecules (HOM). Key for efficiency of such HOM in early particle growth is that their formation is induced by one attack of the oxidant (here O3), followed by an autoxidation process involving molecular oxygen. Similar mechanisms were recently observed and predicted by quantum mechanical calculations e.g., for isoprene. To assess the atmospheric importance and therewith the potential generality, it is crucial to understand the formation pathway of HOM.To elucidate the formation path of HOM as well as necessary and sufficient structural prerequisites of their formation we studied homologous series of cycloalkenes in comparison to two monoterpenes. We were able to directly observe highly oxidized multifunctional peroxy radicals with 8 or 10 O atoms by an Atmospheric Pressure interface High Resolution Time of Flight Mass Spectrometer (APi-TOF-MS) equipped with a NO3−-chemical ionization (CI) source. In the case of O3 acting as an oxidant, the starting peroxy radical is formed on the so-called vinylhydroperoxide path. HOM peroxy radicals and their termination reactions with other peroxy radicals, including dimerization, allowed for analyzing the observed mass spectra and narrowing down the likely formation path. As consequence, we propose that HOM are multifunctional percarboxylic acids, with carbonyl, hydroperoxy, or hydroxy groups arising from the termination steps. We figured that aldehyde groups facilitate the initial rearrangement steps. In simple molecules like cycloalkenes, autoxidation was limited to both terminal C atoms and two further C atoms in the respective α positions. In more complex molecules containing tertiary H atoms or small, constrained rings, even higher oxidation degrees were possible, either by simple H shift of the tertiary H atom or by initialization of complex ring-opening reactions.
536 _ _ |0 G:(DE-HGF)POF3-243
|a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|c POF3-243
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)142073
|a Springer, M.
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)144056
|a Ehn, M.
|b 2
700 1 _ |0 P:(DE-Juel1)129345
|a Kleist, E.
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)156385
|a Pullinen, I.
|b 4
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Kurtén, T.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Rissanen, M.
|b 6
700 1 _ |0 P:(DE-Juel1)16324
|a Wahner, A.
|b 7
|u fzj
700 1 _ |0 P:(DE-Juel1)129421
|a Wildt, J.
|b 8
|u fzj
773 _ _ |0 PERI:(DE-600)2069847-1
|a 10.5194/acp-15-6745-2015
|g Vol. 15, no. 12, p. 6745 - 6765
|n 12
|p 6745 - 6765
|t Atmospheric chemistry and physics
|v 15
|x 1680-7324
|y 2015
856 4 _ |u http://www.atmos-chem-phys.net/15/6745/2015/acp-15-6745-2015.html
856 4 _ |u https://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/202148/files/acp-15-6745-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:202148
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)16346
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)142073
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129345
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156385
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)16324
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129421
|a Forschungszentrum Jülich GmbH
|b 8
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-233
|1 G:(DE-HGF)POF2-230
|2 G:(DE-HGF)POF2-200
|a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|v Trace gas and aerosol processes in the troposphere
|x 0
913 1 _ |0 G:(DE-HGF)POF3-243
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a FullTexts
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)IBG-2-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21