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Abstract. It has been postulated that secondary organic par-
ticulate matter plays a pivotal role in the early growth of
newly formed particles in forest areas. The recently detected
class of extremely low volatile organic compounds (ELVOC)
provides the missing organic vapors and possibly contributes
a significant fraction to atmospheric SOA (secondary or-
ganic aerosol). The sequential rearrangement of peroxy rad-
icals and subsequent O, addition results in ELVOC which
are highly oxidized multifunctional molecules (HOM). Key
for efficiency of such HOM in early particle growth is that
their formation is induced by one attack of the oxidant (here
03), followed by an autoxidation process involving molecu-
lar oxygen. Similar mechanisms were recently observed and
predicted by quantum mechanical calculations e.g., for iso-
prene. To assess the atmospheric importance and therewith
the potential generality, it is crucial to understand the forma-
tion pathway of HOM.

To elucidate the formation path of HOM as well as nec-
essary and sufficient structural prerequisites of their forma-
tion we studied homologous series of cycloalkenes in com-
parison to two monoterpenes. We were able to directly ob-
serve highly oxidized multifunctional peroxy radicals with 8
or 10 O atoms by an Atmospheric Pressure interface High
Resolution Time of Flight Mass Spectrometer (APi-TOF-
MS) equipped with a NO; -chemical ionization (CI) source.
In the case of O3 acting as an oxidant, the starting peroxy
radical is formed on the so-called vinylhydroperoxide path.
HOM peroxy radicals and their termination reactions with

other peroxy radicals, including dimerization, allowed for
analyzing the observed mass spectra and narrowing down
the likely formation path. As consequence, we propose that
HOM are multifunctional percarboxylic acids, with carbony],
hydroperoxy, or hydroxy groups arising from the termination
steps. We figured that aldehyde groups facilitate the initial
rearrangement steps. In simple molecules like cycloalkenes,
autoxidation was limited to both terminal C atoms and two
further C atoms in the respective « positions. In more com-
plex molecules containing tertiary H atoms or small, con-
strained rings, even higher oxidation degrees were possible,
either by simple H shift of the tertiary H atom or by initial-
ization of complex ring-opening reactions.

1 Introduction

The formation of new particles is an important process in the
natural and anthropogenically influenced atmosphere (Ker-
minen et al., 2005; Kuang et al., 2009; Hamed et al., 2007;
Kulmala et al., 2004a, 2013; Spracklen et al., 2010). While
it seems clear now that sulfuric acid molecules, eventually
in interaction with amines and ammonia, form the first nu-
clei (Bzdek et al., 2013; Berndt et al., 2005; Kuang et al.,
2008; Sipéld et al., 2010; Vuollekoski et al., 2010; Zhao et al.,
2011; Kirkby et al., 2011; Almeida et al., 2013), the mech-
anisms of growth of such nuclei has been under debate for
a long time (Kulmala et al., 2004b, 2013; Kerminen et al.,
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2010; Riccobono et al., 2012). Since new particle formation
is often observed in forest regions with relatively clean air,
the amount of sulfuric acid is insufficient to explain the ob-
served growth and it has always been proposed that organic
vapors should be involved in particle growth (Zhang et al.,
2004; Metzger et al., 2010; Paasonen et al., 2010; Donahue et
al., 2011; Riipinen et al., 2011, 2012; Ehn et al., 2012, 2014;
Riccobono et al., 2014; Schobesberger et al., 2013; Kulmala
et al., 2013). The organic vapors were supposed to have very
low vapor pressures and it was estimated that such vapors
could make up more than 50 % of the organic fraction (Ri-
ipinen et al., 2011; Yli-Juuti et al., 2011). However, in the
atmosphere, volatile organic compounds (VOC) are emitted
mainly as hydrocarbons or with low degree of oxidation, oth-
erwise they would not be volatile. Organic molecules with
the required degree of oxidation and functionalization to ex-
hibit sufficiently low vapor pressures very often require sev-
eral oxidation steps to be formed from VOC in the gas phase
by OH radicals. Stepwise oxidation by OH radicals makes
the overall oxidation process slow and/or would lead to a
high degree of diversification of products, as OH is not a
very specific oxidation agent. Such sequential oxidation is
not suited to produce high supersaturations of organic vapors
required for growing molecular size critical nuclei.

New instrumentation, namely the atmospheric pressure
interface time-of-flight mass spectrometer (APi-TOF-MS,
Junninen et al., 2010) enabled the direct measurement of
natural ions in the atmosphere. By applying APi-TOF-MS
in Hyytidld, a forestry station in southern Finland, Ehn et
al. (2010) observed ions of organic compounds in mass
ranges of 300-400 and 500-600Da. They suggested at
the time that these are highly oxidized organics, likely or-
ganic nitrates and their dimers. In a study in the Jiilich
Plant Atmosphere Chamber (JPAC) using APi-TOF-MS, Ehn
et al. (2012) demonstrated that the organics observed in
Hyytidld mainly arise from «-pinene ozonolysis; the mass
spectrometric pattern derived for S-pinene and isoprene were
different from that for «-pinene. The JPAC is operated as
continuously stirred flow reactor (Mentel et al., 2009) and
the steady state can be conserved for an arbitrary duration.
This allowed for long integration times and application of the
low sensitivity but high resolution W mode of APi-TOF-MS.
This way Ehn et al. (2012) determined that the compounds
seen in the mass spectra in JPAC and Hyytiéld are highly ox-
idized Cyp compounds clustered with NO5 and the respec-
tive dimers, also clustered with NO3'. The Cj9 compounds
exhibit O/C ratios close to one or larger and a number of
H atoms similar to the reactant «-pinene (H4 or Hj¢), result-
ing in molecular formulas CioHj4,1609—11. Similar organic
molecules were observed independently in the CLOUD stud-
ies in clusters with sulfuric acid (Schobesberger et al., 2013).

The C1p compounds in question are highly oxidized mul-
tifunctional molecules (HOM, Ehn et al., 2012) and thus
must have very low vapor pressures. They have been also
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called extremely low volatility organic compounds (ELVOC,
Schobesberger et al., 2013, Ehn et al., 2014) in order to ac-
count for their role in the early stage of new particle forma-
tion and to distinguish them from other volatility classes such
as low volatility organic compounds (LVOC), semi volatile
organic compounds (SVOC), and intermediate volatility or-
ganic compounds (IVOC) which are discussed in atmo-
spheric formation of secondary organic aerosol (SOA) (Don-
ahue et al., 2012; Jimenez et al., 2009; Murphy et al., 2014).
We focus here on the structure and chemistry of ELVOC and
not so much on their atmospheric role in particle formation as
extreme low volatility condensable organic vapors. We will
therefore use the notation HOM (highly oxidized multifunc-
tional molecules, Ehn et al., 2012) when referring to chem-
ical structures and pathways and use the notation ELVOC,
when referring to the impacts in the atmosphere.

By making use of the fact that ELVOC prefer to clus-
ter with NO3', Ehn et al. (2014) applied NO; -CI-APi-TOF-
MS (Jokinen et al., 2012) and demonstrated that the for-
mation of ELVOC is significant with a branching ratio of
7+ 3.5 % of the turnover of «-pinene with ozone. Moreover,
it seems that endocyclic double bonds in monoterpenes like
limonene are structural features that support ELVOC forma-
tion (Ehn et al., 2014; Jokinen et al., 2014). Further, it was
suggested that a radical chain of peroxy radical formation
and intramolecular H shifts could be the path to ELVOC for-
mation, resulting in multiple hydroperoxides with increasing
oxygen content in steps of 32 Da (Ehn et al., 2014). H mi-
gration to peroxy radicals is known at elevated temperatures
and for specific atmospheric radicals (Cox and Cole, 1985;
Glowacki and Pilling, 2010; Jorand et al., 2003; Perrin et
al., 1998) and the mechanism is commensurable with recent
findings for the autoxidation of isoprene and related com-
pounds (Crounse et al., 2012, 2013, 2011; Praplan et al.,
2012) and with quantum-mechanical calculations, regarding
the oxidation of monoterpenes (Vereecken and Francisco,
2012; Nguyen et al., 2010; Peeters et al., 2009; Vereecken
et al., 2007). Jokinen et al. (2014) demonstrated HOM for-
mation in detail for limonene, a monoterpene. The detailed
chemistry of HOM formation from cyclohexene was eluci-
dated by Rissanen et al. (2014). In this study, we investigated
experimentally which structural and functional elements in
organic molecules favor HOM formation initiated by ozonol-
ysis.

In the studies by Ehn et al. (2014, 2012) HOM with an odd
number of H atoms were detected, suggesting that highly ox-
idized peroxy radicals were observed. This observation was
recently confirmed by Rissanen et al. (2014) and Jokinen et
al. (2014). By increasing NO in the system, the peroxy rad-
icals behaved as expected from classical atmospheric chem-
istry: their concentration decreased as did the concentration
of dimer structures, and in turn organic nitrates increased
(Ehn et al., 2014). As we will show in the following chap-
ters, the peroxy radicals are indeed the pivotal point to un-
derstanding HOM formation. By comparing HOM formation
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Table 1. VOC investigated in this study, steady-state mixing ratio of VOC and O3 during the ozonolysis experiments, rate coefficient for the

VOC + O3 reactions at 298 K.

VOC Molecular Molar mass  Purity [VOClss [O3lss k83 VoC
formula [g mol_l] [%] [ppbl] [ppb] [cm s_l]
cyclopentene® CsHg 68.12 9% 81 9 6.5x10716
cyclohexene? CgH o 82.14  >99 136 65 8x10~17
1-methyl-cyclohexene®  C7Hj, 96.17 97 50 75 15x10716
3-methyl-cyclohexene®  C7H, 9.17 >93 26 84 55x10717
4-methyl-cyclohexene®  C7Hj, 96.17 98 88 70 7x10717
cycloheptene? C7H|, 96.16 97 40 80 2.5x 10716
1-heptene? C7Hy 98.19 97 33 105 1.5x 10717
(Z)-6-nonenal® CoH;60 140.22 92 44 90
(Z)-6-nonen-(1)-ol° CyH;30 1424  >95 1.4 80
5-hexen-2-one? CeH 19O 98.14 99 33 90
a-pinene? CioHjs 13624  >99 10 100 9x10717
A-3-carened CioHig 13624 >98.5 10 100 4x10717

4 Aldrich; ® TCI; ¢ SAFC; 4 Fluka; © NIST Gas Phase Kinetic Data Base (http://Kinetics.nist.gov/Kinetics/)

of selected model and representative compounds with spe-
cific structural properties we will deduce routes to highly ox-
idized multifunctional molecules, making use of established
features of ozonolysis and termination reactions of peroxy
radicals, together with the rearrangement of peroxy radicals
by H shift from C——H to > COO" groups.

2 Experimental

All experiments were carried out in the Jilich Plant Atmo-
spheric Chamber (JPAC). Details of the setup are described
in Mentel et al. (2009) and Ehn et al. (2014). The largest
chamber, with a volume of 1450L, was used in the experi-
ments presented here, and it was operated as a continuously
stirred flow reactor. Temperature (7 = 17°C) and relative
humidity (RH = 60 %) were held constant during the exper-
iments. Two changes were implemented in the 1450 L reac-
tor since Mentel et al. (2009): the whole UV lamp assem-
bly is now placed in a 100 mm diameter quartz tube flanged
in across the chamber from wall to wall, in order to re-
duce direct contact of the reaction mixture with the warm
UV-lamp surface. On top of the Teflon floor of the chamber
a glass floor was placed on 10 mm spacers in order to re-
duce fluorinated compounds and memory effects of HNO3
detected by Ehn et al. (2012). By pumping away the air in
the space between Teflon plate and glass plate at a flow rate
of 1.5Lmin~! diffusion of fluorinated compounds into the
chamber was diminished.

Supply air was pumped through the chamber at a total flow
of 30-35 Lmin~! resulting in a residence time of 40—50 min.
The supply flow was split in two different lines for the reac-
tants in order to prevent reactions in the supply lines. Ozone
and water vapor was added to one of the air streams enter-
ing the reaction chamber, while the other inlet stream con-
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tained the volatile organic compound (VOC) of interest. The
individual VOC were taken from diffusion sources which
are described in Heiden et al. (2003). The hydrocarbons in-
vestigated in this study are listed in Table 1 together with
their molecular mass, purity and supply information. The
steady-state concentrations of the VOC during the experi-
ments are given in Table 1. Independent of the VOC added to
the chamber, the ozone flow into the reaction chamber was
held constant. As a consequence, the steady-state O3 con-
centrations varied depending on the reactivity of added hy-
drocarbons with respect to O3z as given in Table 1. All ex-
periments were performed under low NO (NO < 30 ppt) and
low NO> (NO; < 300 ppt) conditions.

The central analytical instrument was an Atmospheric
Pressure interface High Resolution Time of Flight Mass
Spectrometer (APi-TOF-MS, Aerodyne Research Inc. &
Tofwerk AG; Junninen et al., 2010). The APi-TOF-MS
was equipped with a NOj -chemical ionization (CI) source
(Eisele and Tanner, 1993; Jokinen et al., 2012; A70 Cl-inlet,
Airmodus Ltd) for the detection of highly oxidized organic
compounds. The reagent ion 15N03_ for the CI was gener-
ated by using labeled H'>NO3 (~ 10N in H,0, 98 atom%
5N, Aldrich Chemistry), ionized by an in-line *! Am foil.
As was shown by Ehn et al. (2012) the anion NOj is able
to form a cluster with the expected highly oxidized organic
compounds. The labeling with N Oj5 enables to distinguish
between 9N from the reagent and N that has been incorpo-
rated into the sample molecules, e.g., through reactions with
“NO in the reaction chamber.

The sampling flow from the reaction chamber into the
CI source was 10Lmin~". The flow into the APi-TOF-MS
was thereafter reduced to 0.8 Lmin~! by passing a critical
orifice. Differential pumping by a scroll pump and a three-
stage turbo pump sequentially decreased the pressure from
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Sequence 1. Vinylhydroperoxide path in ozonolysis.

103 mbar in the CI region to 1076 mbar in the time-of-flight
region. Once the ions are sampled into the APi-TOF region,
they are guided by segmented quadrupole mass filters and
electrical lenses in the TOF extraction region. Collisions be-
tween ions and gas molecules will take place, but the energies
are tuned low enough that only weakly bound clusters (e.g.,
water clusters) will fragment. After extraction into the TOF
the ions are separated by their different flight times depend-
ing on their mass to charge ratio.

The sensitivity of the APi-TOF operated as NO3 -CIMS is
discussed in Ehn et al. (2014). We have indication that once
a certain degree of functionalization is achieved (two OH or
OOH groups in addition to two carbonyl groups) the sensitiv-
ity is fairly the same for all HOM species (Mikael Ehn, Theo
Kurten, personal communication). HOM with six or fewer
C atoms and fewer than six atoms were not detected. How-
ever, we found hints that we may be able to detect HOM
with less than six O atoms in molecules with seven or more
C atoms. Thus, the general polarizability of a molecule may
play a role besides directed interactions of functional groups
with the NOj ion.

To control whether or not peaks in the APi-TOF mass
spectra originated from oxidation of the added VOC, blank
experiments without VOC addition were performed. Ozone
was left in the chamber to simulate cases of peaks origi-
nating from ozonolysis of impurities. Some of the peaks in
the mass spectra were abundant also in absence of VOC and
likely arise from fluorinated contaminants. All peaks observ-
able without VOC addition were rejected from interpretation.

Ozonolysis of alkenes in the dark produces OH radicals.
We did not use OH scavenger in most of our experiments.
However, in some control experiments OH produced dur-
ing alkene ozonolysis was scavenged by adding ~ 40 ppm
carbon monoxide (CO). Addition of CO did not change the
majority of the patterns in the mass spectra indicating that
ozonolysis was indeed the major pathway of HOM formation
under the experimental conditions. Nevertheless, CO addi-
tion changed the abundance of certain HOM. This was used
for to separate OH reactions as origin for these HOM.

Atmos. Chem. Phys., 15, 6745-6765, 2015

T. F. Mentel et al.: Formation of highly oxidized multifunctional compounds

R4 hydroperoxy channel: RO, +HO, — ROOH +0,

R5a carbonyl channel: RO, +R'0, — R;C=0+R’-OH +0,

R5b hydroxy channel: RO, +R'0, — ROH +R’,C=0+0,

R6a alkoxy channel: RO, +R'0, — RO +0, + products

R6b alkoxy termination: RO +0, — RyC=0 + HO,

R7a NO alkoxy channel: RO, +NO — RO +NO,

R7b NO org. nitrate channel: RO, +NO — RONO,

R8 peroxide channel (dimeriz.): RO,+ RO, — ROOR’+ 0O,

Sequence 2. General RO, reactions.

3 Methods

The goal of this section is to derive an a priori expecta-
tion scheme for formation of highly oxidized molecules from
ozonolysis of VOC with endocyclic double bonds, and to
predict which intermediates and termination products should
be formed according to classical understanding and recent
mechanistic developments. As we will show, comparison of
the expectations to the observed mass spectra (positive hits)
will make it easier to identify and organize the observations.
Of course the scheme was developed a posteriori but present-
ing it beforehand will help the reader to follow the argumen-
tation.

Under our experimental conditions the ozonolysis is the
major pathway of alkene oxidation. In the case of alkenes
with endocyclic double bonds, ozonolysis leads to ring open-
ing with a Criegee intermediate at one end of the carbon
chain and a carbonyl group on the other end. The Criegee in-
termediate further reacts in several ways. One of these is the
so-called vinylhydroperoxide pathway (Reactions R1-R3,
see Sequence 1). The decomposition of the vinylhydroperox-
ides (Reaction R2) leads to a radical with mesomeric struc-
tures (S1, see Sequence 1). Importantly here, the peroxy rad-
ical S2 is formed by subsequent O, addition to the oxo-alkyl
mesomeric structure (Reaction R3) (cf. reviews of Johnson
and Marston, 2008; Vereecken and Francisco, 2012).

Peroxy radical S2 is the starting point of the following
considerations. As shown in Sequence 2 in general, the re-
action chain can be terminated by the known reactions of the
peroxy radicals (denoted as RO») with HO; (Reaction R4),
with other peroxy radicals (Reactions RS, R8), or with NO
(Reaction R7b) leading to termination products with hy-
droperoxy, carbonyl, or hydroxy groups, alkylperoxides, or
organic nitrates. The chain can also be continued by peroxy—
peroxy (Reaction R6a) and peroxy—NO (Reaction R7a) re-
actions via alkoxy intermediates. The latter form carbonyl
compounds (Reaction R6b) or fragment into smaller units
(e.g., Vereecken and Francisco, 2012). In addition, alkoxy
radicals can undergo isomerization reactions like the H shift
with subsequent O, addition (see Sequence 3, Vereecken and
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Sequence 3. Hydroxy—peroxy path via alkoxy channel.

Francisco, 2012; Vereecken and Peeters, 2010). Note that the
peroxy functionality is recycled in Sequence 3, generating
OH-functionalized peroxy radicals. Hydroxy—peroxy radi-
cals can be terminated in the usual way (Sequence 2). All
these principle pathways are either known (e.g., Finlayson-
Pitts and Pitts Jr., 2000) or have been recently discussed,
based on either calculations (e.g., Vereecken and Francisco,
2012) and/or observations for Cs compounds (e.g., Crounse
et al., 2013).

We will also allow for H shifts from C—H bonds also in
peroxy radicals (Sequence 4), leading to —OOH function-
alized peroxy radicals (Crounse et al., 2013; Vereecken et
al., 2007). This rearrangement was known for processes at
elevated temperatures (Cox and Cole, 1985; Glowacki and
Pilling, 2010; Jorand et al., 2003; Perrin et al., 1998), but has
not been considered as important in gas-phase atmospheric
chemistry until recently. In addition, intramolecular termina-
tion R9c¢ can occur, an H shift from the C—H bond that carries
the hydroperoxy group, leading to a split off of OH and a car-
bonyl termination product (Crounse et al., 2013; Rissanen et
al., 2014). Sequence 4 explains the mass increase in steps
of 32 Th in the type of HOM observed by Ehn et al. (2012,
2014) and investigated here. Since it requires only a single
attack by the oxidant O3 and then proceeds by itself under
involvement of only molecular oxygen, it can be interpreted
as an autoxidation process.

We will apply the known steps (Reactions R4-R6, Se-
quence 2) and rearrangement and autoxidation of peroxy rad-
icals (Sequences 4 and 3) to construct a pathway to form at-
mospheric HOM which is in accordance with both, our mass
spectral observations and experimental findings as well as the
quantum mechanical calculations by Rissanen et al. (2014).
Since we were working at low NO, (< 300 ppt) and under
conditions of negligible NO; photolysis we will neglect the
NO pathways (Reaction R7, Sequence 2).

In this study we will focus on such pathways where the
peroxy radicals and their termination products retain the
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HO” HO” 0

intramolecular termination

R\(|: _O—0OH R__O
R9c carbonyl termination: H + ‘OH
- (o]

o_ .
~o HO”

Sequence 4. Peroxy path.

carbon number of the reactants. These are the majority of
the observed products. In addition, we will consider their
dimers with twice the number of C atoms (Reaction R8, Se-
quence 2).

As we will show, most of the observed HOM arise from
the straight peroxy autoxidation path (Sequence 4), which
we will denote as peroxy path. However, often a minor frac-
tion of products arises from Sequence 3, which we will call
the hydroxy—peroxy path. Peroxy radicals arising from the
hydroxy—peroxy path are OH substituted and contain an odd
number of O atoms (like S3 in Sequence 3). The hydroxy—
peroxy radical can carry on the autoxidation (Sequence 4)
and terminate in usual ways (Reactions R4-R6 and Reac-
tion R8 in Sequence 2).

Applying the principles outlined above to the example of
cyclopentene, we may expect from the peroxy path the type
of species in Table 2a; possible intermediates and products
from hydroxy—peroxy path are shown in Table 2b. According
to the vinylhydroperoxide path the starting peroxy radical in
the series (upper left corner of Table 2a) is a Cs chain with
aldehyde functions on both ends. In addition, a peroxy radi-
cal function is located at the C atom in «-position to one of
the aldehyde groups: S2 with R = (CH»)» (see Sequence 1).

Radical S2 is the starting point for either further H shift/O,
addition (Table 2a, down the first column) or termination
products (along the line). The scheme does not explain the
relative importance of the pathways, only that they could be
a priori possible. In reality, the abundances of stable termi-
nation products and postulated peroxy radicals are the result
of detailed local molecular structure and a complex forma-
tion and destruction scheme as discussed below (individual
lifetimes, cf. Rissanen et al., 2014). Moreover, our detec-
tion method may require a certain minimum degree of ox-
idation of the analyte molecules before they can be detected
as nitrate clusters. The parent peroxy radicals with molecular
mass m and their termination products form a repeated pat-
tern m — 17 (carbonyl), m —15 (hydroxy), m, m+1 (hydroper-
oxy) in the mass spectra. This is indicated in the second line
of Table 2a.

Atmos. Chem. Phys., 15, 6745-6765, 2015
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Table 2. (a) Possible peroxy radicals from cyclopentene and products of their reactions with peroxy radicals (cf. Sequence 2). (b) Analogous
scheme for the hydroxy—peroxy path. The first peroxy radical in (b) arise from the first peroxy radical in (a) by reaction with another peroxy

radical (or NO).

Peroxy radical ~Carbonyl Hydroxy Hydroperoxy
(a) m m—17 m—15 m+1
C5H704 CsHgO3 CsHgO3 Cs5HgOq4
131Da 114Da 116 Da 132Da
CsH70¢ CsHgO5 CsHgOs5 Cs5HgOg
| autoxidation 163 Da 146 Da 148 Da 164 Da
CsH70g CsHgO7 C5HgO;7 CsHgOg
195Da 178 Da 180 Da 196 Da
CsH7010 CsHgO9  CsHgOg9  CsHgOpo
227 Da 210Da 212Da 228 Da
termination —
(b) m m—17 m—15 m—+1
Cs5H705 CsHgO4 CsHgO4 Cs5HgOs
' 147 Da 130 Da 132Da 148 Da
autoxidation CsH707 CsHgOg Cs5HgOg CsHgO7
after Sequence 3 179 Da 162 Da 164 Da 180 Da
CsH709 CsHgOg  CsHgOg  CsHgOg
211Da 194 Da 196 Da 212Da

termination —

The first entrée in Table 2b is a hydroxy—peroxy radical
of type S3 which is formed by Sequence 3 from the starting
intermediate S2 in Table 2a. The hydroxy—peroxy radicals
noted in the first column of Table 2b can be either formed
by Sequence 3 from the corresponding peroxy radicals noted
in the first column of Table 2a or in increments of O, by
H shift/O, addition (Sequence 4) of the previous hydroxy—
peroxy radical.

It is evident from Table 2 that both peroxy and hydroxy—
peroxy pathways generate progressions in the mass spectra
with distance 32 Da (2 x O). However, the two progressions
are shifted by 16 (the O of the hydroxy group in the hydroxy—
peroxy radical) with respect to each other. This can lead to
isobaric overlap of hydroperoxides (m+-1) from the peroxide
m and hydroxy termination products from the corresponding
hydroxy—peroxide at m 4 16 (m + 16 — 15, cf. column 4 in
Table 2a and column 3 in Table 2b).

We investigated several compounds to detect structural
prerequisites of the formation of HOM. The cyclic alkenes
cyclopentene, cyclohexene, and cycloheptene were used to
study the impact of chain length on HOM formation. 1-
methyl-cyclohexene was used to study possible impacts of
methyl-substitution of the double bond, with structural sim-
ilarity to a-pinene. In 3-methyl-cyclohexene and 4-methyl-
cyclohexene, the methyl substituent is moving away from the
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endocyclic double bond, and they provide branched C7 vari-
ations of cycloheptene.

Finally, we studied the formation of HOM from the func-
tionalized linear alkenes (Z)-6-nonenal, (Z)-6-nonenol, (5)-
hexen-2-one, and 1-heptene. These compounds were cho-
sen because during ozonolysis they should produce a peroxy
radical function located in a-position to the forming alde-
hyde group (similar to S2, Sequence 1), but carry a differ-
ent or none functional group at the other, the terminal or w-
C atom, end of the chain. The reason was to study the im-
pact of a functionalization on atmospheric HOM formation.
Two monoterpenes, «-pinene and A-3-carene, both abundant
in nature, serve as test cases for atmospherically relevant,
complex bicyclic molecules. «-pinene and A-3-carene carry
tertiary H atoms, as do 3-methyl-cyclohexene and 4-methyl-
cyclohexene.

4 Results

Closed-shell HOM and their peroxy intermediates were de-
tected as clusters with one 15NO3_ ion attached (Ehn et al.,
2012, 2014). Note that the postulated peroxy radicals have
odd molecular masses because of the missing H atom, but
due to the use of >N labeled nitric acid to generate 15NO3_
as reagent ion they will be detected as 1 NOj -cluster at even
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Table 3. Observation of HOM formation as function of compound and functionalization.
Compound Formula HOM products ~ w-Terminal group?
Cyclic alkenes
cyclopentene CsHg yes aldehyde
cyclohexene CeHpo yes aldehyde
cycloheptene C7Hq» yes aldehyde
1-methyl-cyclohexene C7Hjpp yes ketone/aldehyde
3-methyl-cyclohexene C7Hj» yes aldehyde
4-methyl-cylohexene C7Hq» yes aldehyde
Linear alkene
1-heptene C7H 4 no methyl
Linear alkenes with additional functional group
(Z)-6-nonenal CogH ;60O yes aldehyde
(Z)-6-nonenol CgH|70H no alcohol
5-hexen-2-on CeH100 no ketone
Monoterpenes
a-pinene CioHig yes ketone/aldehyde
A — 3—carene CioHie yes ketone/aldehyde
2 at the opposite end to the oxoic radical groups in Fig. 3
x10” LI .
12 CsH;051°NO;” v 32 4 A CioH16041°NO;’ C1nH140I4-15N03' |
+1 +1 C1oH16041-1NOy" C1oH14046-1°NOy’
100 | -17 -17 .
[ 2.5 .
N -15 -15 N C1gH1404,-NO;"
T g 1 T
S 5 2t _
3 @
"é 6 1 ‘g 1.5 1
3 3
§ 4t . § 1t 1
ol ] 0.5 | JJ :
\ l L L 1 | 1 s | | [} L
0||||.|.||.|. Ll ol o ,I I, ) ,“ ) )
. 320 340 360 380 400 420 440 460

240 245 250 255 260 265 270 275 280 285 290
mass/charge / Th

Figure 1. Spectrum of ozonolysis products of cyclopentene. The
most abundant peroxy radical C5H708-15NO3_ and its termina-
tion products are marked as well as the next higher peroxy radical
(432 Th) and termination products. The m/z differences in [Th] are
indicated.

masses. In the same sense, all closed-shell molecules will be
detected as 15NO; -clusters at odd masses.

Figure 1 shows a typical mass spectrum observed for cy-
clopentene ozonolysis in the range between 240 and 280 Th,
which is where the nitrate clusters of Cs-HOM are ex-
pected. It shows that we indeed observe the set of termina-
tion products as developed in Sect. 3. In addition, we found
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Figure 2. Spectrum of ozonolysis products of cyclopentene with
dimer character. The detected elemental compositions are indicated
(cf. Sect. 5.4).

a peak at 258 Th to which we attributed the molecular for-
mula CsH70g-NOj'. This cluster has an odd number of
H atoms indicating that the organic moiety is not a closed-
shell molecule. As we will show in the following chapter,
this indeed is the peroxy radical. The corresponding termi-
nation products are indicated by their mass difference to the
peroxy radical at m = 258 Th, as introduced in Sect. 3. The
signal at 273 Th is the carbonyl termination product from the

Atmos. Chem. Phys., 15, 6745-6765, 2015
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Figure 3. Peroxy radicals of the investigated VOC as expected from
the vinylhydroperoxide path. Position of the peroxy group and func-
tionality at the w-terminal end.

next progression shifted by 32 Th. The peak at 255Th is a
cluster with a perfluorinated acid (chamber artefact).

Figure 2 shows the same mass spectrum in the region of
dimer structures. The two largest peaks at 421 and 389 Th
have organic moieties with molecular formulas C19H14014
and C19H14012, which we will attribute to peroxides formed
by recombination of peroxy radicals. The molecular for-
mulas assigned to the peaks at 343 and 375 Th contain 16
H atoms and odd number of oxygen (C10H1609, C10H16011)
and the compounds are obviously formed on a different for-
mation path. As we did not scavenge OH radicals also formed
in the vinylhydroperoxide path, oxidation by OH may be in-
volved in the formation of these compounds.

Similar mass spectrometric patterns were observed for all
investigated compounds that form HOM, and Table 3 gives
the overview which of the compounds formed HOM in our
ozonolysis experiments. In Table 3, we also list the func-
tionalization at the w-C atom, the opposite end of the ini-
tial peroxy radical, as explained by structures S2, S4a, S4b,
and S5-S7 in Fig. 3. In the case of methyl-substituted double
bonds, the symmetry is broken and the initial peroxy radical
can be either formed at the unsubstituted site of the double
bond, then the w-terminal group is an acetyl group (S5) or
at the substituted site (S4a, b) then the w-terminal group is
an aldehyde. In the case of the linear alkenes, we consider
only the product with the longer C chain after ozonolysis
of the double bond. The peroxy group resides in «-position
to the remaining C atom of the double bond leaving the w-
terminal group to whatever was at the other end of the parent
molecule.

Efficient formation of highly oxidized molecules was
found for the ozonolysis of all endocyclic alkenes, includ-
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Table 4. HOM observed during ozonolysis of cyclopentene. The
second header line shows at which molar masses the termination
products are expected relative to the peroxy radical with molar mass
m (unit masses). Filled cells indicate that these compounds were de-
tected with given elemental composition and relative intensity (sec-
ond line in the same cell). Relative intensities were normalized to
the largest HOM signal. The third line in the cell gives the molar
mass [Da] in unit mass resolution and the precise m/z [Th] at which
the molecule was detected as cluster with 15N03_ .

Peroxy radical ~ Carbonyl Hydroxy Hydroperoxy
m m—17 m—15 m+1
CsH70g CsHgO7 CsHgO7 CsHgOg

54 % 100 % 14 % 19 %P
195/257.9995  178/240.996 180/243.0124  196/259.0073
C5H7OS C5HgOg

1% 19 9%°

211/273.9944 196/259.0073

CsH7010 CsHgO9g CsHgOg

6% 43 % 11%

227/289.9893  210/272.9866  212/275.0022

@ hydroxy—peroxy path Sequence 3
b C5H70g+HO, — C5HgOg or CsH709 + ROy — C5HgOg

Table 5. HOM observed during ozonolysis of cyclohexene. The sec-
ond header line shows at which molar masses the termination prod-
ucts are expected relative to the peroxy radical with molar mass m
(unit masses). Filled cells indicate that these compounds were de-
tected with given elemental composition and relative intensity (sec-
ond line in the same cell). Relative intensities were normalized to
the largest HOM signal. The third line in the cell gives the molar
mass [Da] in unit mass resolution and the precise m /z [Th] at which
the molecule was detected as cluster with ]SNO; .

Peroxy radical ~ Carbonyl Hydroxy Hydroperoxy
m m—17 m—15 m—+1
CgHyOg CgHgO7 CgH1007 CgH1008
7 % 24 % 1% 5%
209/272.01453  192/255.01270  194/257.02523  210/273.0230
CGHgog
14 %
208/271.00724
CsHoO19 CgHgOg CsH10010
<1% 100 % <1%
241/304.00582  224/287.0024 242/305.00889

4 hydroxy—peroxy path Sequence 3

ing a-pinene and A-3-carene, and from ozonolysis of (Z)-6-
nonenal. In contrast, ozonolysis of 1-heptene, (Z)-6-nonenol
and 5-hexen-2-on did not lead to substantial formation of
highly oxidized molecules. In all the positive cases, the mass
spectra were dominated by few peaks, analogous to Figs. 1
and 2, and these are listed in Tables 4-10, 12, and 13. All
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Table 6. HOM observed during ozonolysis of cycloheptene. The
second header line shows at which molar masses the termination
products are expected relative to the peroxy radical with molar mass
m (unit masses). Filled cells indicate that these compounds were de-
tected with given elemental composition and relative intensity (sec-
ond line in the same cell). Relative intensities were normalized to
the largest HOM signal. The third line in the cell gives the molar
mass [Da] in unit mass resolution and the precise m/z [Th] at which
the molecule was detected as cluster with ! NO3'.

6753

Table 7. HOM observed during ozonolysis of (Z)-6-nonenal. The
second header line shows at which molar masses the termination
products are expected relative to the peroxy radical with molar mass
m (unit masses). Filled cells indicate that these compounds were de-
tected with given elemental composition and relative intensity (sec-
ond line in the same cell). Relative intensities were normalized to
the largest HOM signal. The third line in the cell gives the molar
mass [Da] in unit mass resolution and the precise m/z [Th] at which
the molecule was detected as cluster with 15N03_ .

Peroxy radical ~ Carbonyl Hydroxy Hydroperoxy
m m—17 m—15 m+1
C7H00s5
<1%
174/237.0395
C7H1105
<1%
206/269.0462
C7H108 C7H007 C7H 207
2% 3% <1%
223/286.02945  206/269.02775  208/271.0409
C7H;00}
8 %
222/285.02306
C7H11019 C7H1009 C7H 12010
1% 100 % <1%
255/318.02027  238/301.01758 256/319.02544
C7H 0%, C7H;00%,
<1% <1%
271/334.01508  254/317.0141

@ hydroxy-peroxy path Sequence 3

these compounds have in common that the respective starting
peroxy radicals of type S2 or S4a,b in Fig. 3 can be formed.

The absence of highly oxidized molecules of 1-heptene,
(Z)-6-nonenol, and especially 5-hexen-2-on suggests that
an aldehyde group at the w-C atom facilitate HOM for-
mation. No functionality (CH3z—), a methyl-oxo group
CH3——C(=0)—, or an alcohol group HO-CH5- at the w-end
of the molecule obviously do not strongly promote forma-
tion of HOM. The positive results for 1-methyl-cyclohexene,
and both monoterpenes (MT) indicate that the peroxy radi-
cal group can be located either in a-position to a keto- or an
aldehyde group. Applying our scheme, this means that w—
aldehyde functionality in peroxy radicals S2 and S4a, b in
Fig. 3 favors H shifts, while the other groups in S5-S7 do
not.

www.atmos-chem-phys.net/15/6745/2015/

Peroxy radical ~ Carbonyl Hydroxy Hydroperoxy

m m—17 m—15 m—+1

CeHoOg
10 %
209/272.0151

CeHyO3
3%
225/288.0101

CeHgO10 CeHgOg
5% 100 %
241/304.0050 224/287.0022

4 hydroxy-peroxy path Sequence 3

5 Discussion

5.1 Unsubstituted cycloalkenes, peroxy radicals, and
(Z)-6-nonenal

Tables 4, 5, and 6 list the molecular masses of the organic
moieties that were attributed to highly oxidized molecules,
derived from the mass spectra for the cases of cyclopentene,
cyclohexene, and cycloheptene. The mass of the nitrate ion
was subtracted and termination products of peroxy radicals
with mass m were classified as by m — 17 (carbonyl), m — 15
(hydroxy) and m + 1 (hydroperoxy), as in Table 2 of Sect. 3.
Only such molecular structures that were indeed observed
are noted, together with their molecular mass and the precise
m/z at which the molecules were detected as cluster with
NOj3 . Clearly, we did not find all possible intermediates and
termination products derived in Sect. 3.

As shown already in Fig. 1, we often observed quite strong
peaks at such odd masses m where we would expect the per-
oxy radicals. From the molecular formula alone, which is as-
sessable by APi-TOF-MS, their chemical character as alkyl,
alkoxy or peroxy radicals cannot be distinguished. Alkoxy
and alkyl radicals react with the O, in air, while peroxy rad-
icals react mainly with other peroxy radicals or NO, the lat-
ter being low in our experiments. We can exclude alkyl and
alkoxy radicals, as their lifetime is too short to allow for for-
mation in measurable amounts (and to survive in the APi-
TOF-MS). Other candidates would be organic nitrates, which
we exclude by the observed mass defects and because of
our low NO, conditions. Moreover, highly oxidized nitrates
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Table 8. HOM observed during ozonolysis of 1-
methylcyclohexene. The second header line shows at which
molar masses the termination products are expected relative to
the peroxy radical with molar mass m (unit masses). Filled cells
indicate that these compounds were detected with given elemental
composition and relative intensity (second line in the same cell).
Relative intensities were normalized to the largest HOM signal.
The third line in the cell gives the molar mass [Da] in unit mass
resolution and the precise m/z [Th] at which the molecule was
detected as cluster with 15NO; .

T. F. Mentel et al.: Formation of highly oxidized multifunctional compounds

Table 9. HOM products observed during ozonolysis of 3-
methylcyclohexene. The second header line shows at which molar
masses the termination products are expected relative to the peroxy
radical with molar mass m (unit masses). Filled cells indicate that
these compounds were detected with given elemental composition
and relative intensity (second line in the same cell). Relative inten-
sities were normalized to the largest HOM signal. The third line in
the cell gives the molar mass [Da] in unit mass resolution and the
11)§ecise m/z [Th] at which the molecule was detected as cluster with
NO5.

Peroxy radical ~ Carbonyl Hydroxy Hydroperoxy
m m—17 m— 15 m+1
C7H; 106 C7H;005
<1% <1%
191/254.03857  174/237.03855
C7H“O% C7H1002
<1% 1%
207/270.03179  190/253.0331
C7H;,0g C7H;007 C7H1207 C7H;20s
2% 100 % 2% 1%
223/286.03086  206/269.02829  208/271.3858 224/287.04046
C7H; 108
<1%
239/302.02700
C7H1009 C7H 1209
<1% <1%

238/301.01326

240/303.03521

Peroxy radical =~ Carbonyl Hydroxy Hydroperoxy
m m—17 m—15 m+1
C7H;00s5
<1%
174/237.0382
C7H1()Og
<1%
190/253.0331
C7H;0g C7H,907 C7H|203
12 % 25% 6 %
223/286.0308  206/269.0281 224/287.0386
C7H;10§ C7H100§
5% 19 %
239/302.0257  222/285.0230
C7H11010 C7H009 C7H1209
9% 100 % 13 %
255/318.0206  238/301.0179  240/303.0335

2 hydroxy-peroxy path Sequence 3

would be expected at m + 30, so they cannot interfere with
O or O, progressions of m. A contribution of 1>C isotope
can be excluded if there is no strong signal at m — 1. We
conclude that the strong peaks at m are peroxy radicals. It
is known that peroxy radicals can have lifetimes of minutes
(e.g., Finlayson-Pitts and Pitts Jr., 2000, Sect. 6.D.2.e), so
they can be built up in high enough concentrations and ob-
viously survive in our APi-TOF-MS. HOM peroxy radicals
were also observed in previous studies (Ehn et al., 2014;
Jokinen et al., 2014; Rissanen et al., 2014). However, in
the case of a significant contribution of the hydroxy—peroxy
path leading to hydroxy—peroxy radicals at m + 16 the corre-
sponding carbonyl termination product resides at the m — 1
(m + 16 — 17) position. In these cases, the '3C contribution
of the carbonyl termination product at m must be considered
and corrected.

According to the scheme in Table 2, the starting point for
formation of highly oxidized molecules is the peroxy rad-
ical of type S2 (Sequence 1) with R = (CHj),—4 and four
O atoms. The first-detected peroxy radicals were Cs5H7Ogs,
CeHoOg, and C7H;Og and the most oxidized were the Oyg-
analogues (Tables 4-6). Peroxy radicals with odd oxygen
numbers likely involve alkoxy rearrangement Sequence 3 at
one step. We will discuss both findings later in detail.

Atmos. Chem. Phys., 15, 6745-6765, 2015

@ hydroxy—peroxy path Sequence 3

The next columns in Tables 4-6 list the stable HOM pro-
duced in termination reactions from the peroxy radical in the
first column. All intensities were normalized to the strongest
signal. For cyclohexene and cycloheptene this is the Og-
carbonyl termination product (m — 17) which is formed from
the peroxy radical carrying 10 O atoms either via Reac-
tions (RS), (R6) (Sequence 2) or, as shown by Rissanen et
al. (2014), via Reaction (R9c) (Sequence 4). The correspond-
ing peak is second largest for cyclopentene; here the O7-
carbonyl termination product from the precursor peroxy rad-
ical with eight O atoms is about a factor of 2 larger (Table 4).
The analogous product appeared also for cyclohexene, how-
ever contributing only 20 % of the largest carbonyl termina-
tion product (Table 5), and it is unimportant for cycloheptene
(Table 6). In general, carbonyl termination products (m — 17)
arising from Reactions (R5) and (R6) are expected to be the
major products at typical atmospheric concentrations of NO,
HO,, and RO>.

Compared to carbonyl termination products, hydroxy (m —
15) and hydroperoxy termination products (m + 1) are less
important termination products and only for cyclopentene
we find significant contribution of hydroxy and hydroper-
oxy termination products of 10-20 %. Their contribution is
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Table 10. HOM products observed during ozonolysis of 4-methyl-
cyclohexene. The second header line shows at which molar masses
the termination products are expected relative to the peroxy radi-
cal with molar mass m (unit masses). Filled cells indicate that these
compounds were detected with given elemental composition and
relative intensity (second line in the same cell). Relative intensities
were normalized to the largest HOM signal. The third line in the
cell gives the molar mass [Da] in unit mass resolution and the pre-
cise m/z [Th] at which the molecule was detected as cluster with

6755

Table 11. Comparison of HOM products resulting from C7H|4
compounds.

5No3 .

Peroxy radical ~ Carbonyl Hydroxy Hydroperoxy
m m—17 m—15 m+1
C7H;005
<1%
174/237.03635
C7H; IO% C7H1()Og
<1% <1%
207/270.0359 190/253.03390
C7H;,0g C7H;007 C7H207 C7H20s
<1% 2% <1% <1%
223/286.02825 206/269.0281 208/271.0437 224/287.03770
C7H1103 C7H100§
<1% 5%
239/302.0224 222/285.02215
C7H11010 C7H1009 C7H 12010
2% 100 % <1%
255/318.02114  238/301.01848 256/319.02566
C7H1102111 C7H100?0
<1% 1%
271/334.01626  254/317.01331
C7H10011 C7H 12014
<1% <1%

270/333.01163  272/335.02524

4 hydroxy-peroxy path Sequence 3

decreasing with increasing chain length, and their contribu-
tion in the case of cycloheptene is less than 1 %. Increas-
ing chain length may make the geometry of the H shift
more favorable (i.e., 1,6 instead of 1,5 or 1,4 etc.). Thus,
the H shifts of longer-chain peroxy radicals become faster,
while bimolecular reactions are more or less unchanged, thus
giving more carbonyl termination products in relation to hy-
droxy and hydroperoxy termination products. The detailed
product distribution must be also dependent on the reaction
conditions, i.e., reactant and oxidant concentrations, temper-
ature etc. For example the formation of hydroperoxy groups
is controlled by HO, /RO ratio and we did not take specific
measures to hold this ratio constant.

For cyclopentene the hydroperoxide CsHgOg provides a
substantial contribution of 19 % under the given conditions.
CsHgOg can be either the hydroperoxy termination product
from CsH;0g + HO; (Reaction R4) or an hydroxy termina-

www.atmos-chem-phys.net/15/6745/2015/

Cycloheptene 1-MCH 3-MCH 4-MCH
Peroxy radical
C7H110¢ - X - -
C7H110g X X X X
C7H11019 X - X X
Carbonyl
C7H1¢05 X X X X
C7H1007 X X X X
C7H1009 X X X X
C7H10011 - - - x
Hydroxy
C7H 207 X X - X
C7H1209 - X X -
C7H12014 - - - x
Hydroperoxy
C7H120¢ - interference - -
C7H120g - X X X
C7H 12019 X - - X
Hydroxy—peroxy radical
C7H1107 X X - X
C7H1109 - X X X
C7H1 101 1 X - - X
Hydroxy—peroxy path carbonyl
C7H100¢ - X X X
C7H100g X - X X
C7H0010 x - - x

tion product formed in reaction (R5, Sequence 2) including
the hydroxy—peroxy radical CsH7Oyg. Both lead to same iso-
baric mass (Table 4). Since the corresponding carbonyl ter-
mination product is missing and the precursor CsH70g of
the hydroxy termination product is much less abundant than
that of the hydroperoxy product CsH;0g, we suggest that
the main fraction of the peak observed for C5HgOg is the
hydroperoxy termination product.

As is obvious from Tables 4 and 5, for cyclopentene and
cyclohexene, only molecules with more than seven oxygen
atoms were detected. However, as can be seen in Table 6 for
cycloheptene, five or fewer O atoms can be detected for Cy;
compounds, but only in traces. This is corroborated by Ta-
bles 7 for (Z)-6-nonenal and Tables 8 and 9 for the methyl-
cyclohexenes.

We can already deduce some rules for formation of HOM
from the results of cyclopentene, cyclohexene and cyclo-
heptene and construct a mechanistic scheme as shown in
Fig. 4 (cf. Rissanen et al., 2014). The most abundant peaks
in the monomer range of HOM can be attributed to products
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Figure 4. Examplaric mechanistic scheme in accordance with the results of the ozonolysis of cycloalkenes. Cyclopentene: R =(CHj),
cyclohexene: R = (CHj),, cycloheptene: R =(CHj)3. The peroxy radicals with increasing number of O atoms (m/z = m) on the left-hand
side are formed by autoxidation (Sequence 4). They can undergo either termination reactions in Sequence 2 or follow the hydroxy—peroxy

path (Sequence 3). The carbonyl (m —

17), hydroxy (m — 15) and hydroperoxy (m + 1) termination products are shown for the Og—peroxy

radical (S8-S10) and the Og—peroxy radical (S11-S12) in the middle and right hand column, respectively. The functional groups formed by
the termination reactions are shown in blue. The products S8 and S11 from the intramolecular termination (Reaction R9c) are the same as for
the intermolecular termination Reactions (R5a) and (R6b). Note that in principle, the series of rearrangements can be also permuted. If the
H atoms at the C atom in «-position to the second aldehyde group are subject to H shift before attack on the aldehyde group itself, structures

like S14 could be formed, isobaric to S12.

preserving the C atom number of the precursor. They form
regular patters in the mass spectra, which can be explained
by expected termination products of RO, termination reac-
tions Sequence 2 and the intramolecular termination (R9c)
(Rissanen et al., 2014), either directly via the peroxy path
Sequence 4 or via an alternative, the hydroxy—peroxy path,
involving alkoxy rearrangement Sequence 3 as intermediate
step.

Stable, closed-shell termination products are most abun-
dant. Carbonyl termination products (S8, S11) are more
abundant than hydroperoxy (S10, S13) and hydroxy termi-
nation products (S9, S12, S14) and all together they are more
abundant than the peroxy radicals. Products of the hydroxy—
peroxy path gain importance with increasing chain length,
but remain sparse and less abundant than products from the
peroxy path. Independent of the chain length, the maximum
number of O atoms observed in peroxy radicals and hy-
droperoxides is ten, or nine for corresponding carbonyl and
hydroxy termination products, because here one O atom is
lost in termination Reactions (RS) and (R6a) (Sequence 2).
The starting radicals S2 have four O atoms — two carbonyl
end groups (2 x O) and a peroxy functionality (1 x OO")
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in a-position to one of the end groups. Therefore, the H-
shift/O;-addition mechanism of peroxy radicals can operate
up to three times introducing up to six further O atoms. This
together with the sensitivity of formation of highly oxidized
molecules to an aldehyde w-terminal group (Table 3) suggest
that H shifts, which are competitive at the experimental per-
oxy radical lifetimes, are limited to the two terminal C atoms
and the two C atoms in «-position to them. The H atoms of
the aldehyde groups are relative weakly bound (Rissanen et
al., 2014) and so it is not surprising that they are preferably
attacked as shown in the first steps on the left-hand side in
Fig. 4. (Additional constraints are the steric availability of
the H atoms.) In general the binding energy of an H atom to
a C atom depends on the functional group added to the re-
spective C atom. Low binding energies certainly will favor
H shifts (given a suited geometry) and therefore favor the au-
toxidation mechanism (e.g., Glowacki and Pilling, 2010).
Attack on aldehyde H atom leads to peroxy radicals of
type —C(=0)OO0" and after further H shift to percarboxylic
acid groups —C(=0)OOH (Fig. 4). We suggest that percar-
boxylic acid groups are able to activate the H atoms at their
neighbor C atom in a-position. This will support one more
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Table 12. HOM products observed during ozonolysis of a-pinene.
The second header line shows at which molar masses the termina-
tion products are expected relative to the peroxy radical with molar
mass m (unit masses). Filled cells indicate that these compounds
were detected with given elemental composition and relative inten-
sity (second line in the same cell). Relative intensities were normal-
ized to the largest HOM signal. The third line in the cell gives the
molar mass [Da] in unit mass resolution and the precise m/z [Th]
at which the molecule was detected as cluster with 1 NO;3.

Peroxy radical ~ Carbonyl Hydroxy Hydroperoxy
m m—17 m—15 m+1
C10H150s C10H1407
46 % 88 %
263/326.0621 264/309.0594
CioH150§ CioH140§
5% 14 %
279/342.0570  262/325.0543
C10H15010 C10H1409 C10H1609 C10H16010
40 % 83 % 100 % 37 %
295/358.0519 326/341.0492  280/343.0648  296/359.0597
CioH1407,  CjoH;607,
69 % 29 %
327/373.0390  312/375.0547

@ hydroxy-peroxy path Sequence 3

autoxidation step. Termination here can lead to the domi-
nant carbonyl termination products. From these observations
we deduce that a highly oxidized carbonyl compound should
have the structure S11 in Fig. 4, i.e., a di-percarboxylic acid
with hydroperoxide group and keto group, both in «-position
to the percarboxylic acid groups, at least in the case of the
plain cycloalkenes discussed here. Assuming that a percar-
boxylic acid group is required for H-shift activation at its
neighboring «-C atom, the corresponding hydroperoxy and
hydroxy termination products should look like structures S12
and S10 in Fig. 4.

If the percarboxylic group is able to activate the H atoms
at its «-C atom in order to be competitive with a shift of an
aldehyde-H, the final attack could also occur at the aldehyde
group. This would lead to either S13 under hydroperoxy ter-
mination or to the structure S14, a mixed carboxyl percar-
boxylic di-acid with hydroperoxide groups at the C atoms in
a position of the acid functions, isobaric to S12 in Fig. 4.

Our interpretations are corroborated by the findings for
(Z)-6-nonenal. Ozonolysis of (Z)-6-nonenal leads to either
a C3-Criegee intermediate and a Ce-dialdehyde, or propanal
and a Cg-Criegee intermediate. Via the vinylhydroperoxide
path the latter forms the same starting peroxy radical as the
ring opening of cyclohexene. Indeed, two peroxy radicals
were detected for (Z)-6-nonenal and the dominant peak is
the carbonyl termination product from the Ojp—peroxy radi-
cal (Table 7).
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Table 13. HOM products observed during ozonolysis of A-3-
carene. The second header line shows at which molar masses the
termination products are expected relative to the peroxy radical with
molar mass m (unit masses). Filled cells indicate that these com-
pounds were detected with given elemental composition and rel-
ative intensity (second line in the same cell). Relative intensities
were normalized to the largest HOM signal. The third line in the
cell gives the molar mass [Da] in unit mass resolution and the pre-
cise m/z [Th] at which the molecule was detected as cluster with
5No3 .

Peroxy radical ~ Carbonyl Hydroxy Hydroperoxy
m m—17 m—15 m+1
C10H1503

10 %

263/326.0621

C1oH15010 C10H1409 C10H1609

94 % 295/358.0519 100 %

47 % 278/341.0492  280/343.0648

5.2 Methyl substitution of cyclohexene

In order to support the suggested reaction path to HOM in
Fig. 4, we now will investigate the effect of methyl substitu-
tion of the double bond. This is also one step further towards
«-pinene, the most abundant MT, which forms ELVOC in
the atmosphere (Ehn et al., 2012, 2014). Table 8 lists the re-
sults for 1-methyl-cyclohexene. Here the largest peak is the
carbonyl termination product CyH;9O7 arising from the per-
oxy radical C7H110g. The corresponding O7-hydroxy and
O7-hydroperoxy termination products can be also identified.
As in the case of cycloheptene, highly oxidized molecules
with less than seven O atoms are detectable, but in very small
amounts only. Compared to cycloheptene (and cyclohexene)
the HOM arising from the Og peroxy radical dominate, while
termination products from the O peroxy radical are sparse.

The methyl substitution at the double bond introduces
asymmetry, leading to three different vinylhydroperoxides
and three different starting peroxy radicals S15-S17 (Fig. 5).
The peroxy radical S17 in Fig. 5 has a methyl-oxo and not
an aldehyde group as w-terminal group. In the case of 5-
hexen-2-on only the S17 analog, S5, (Fig. 3) is formed, and
5-hexen-2-on did not undergo HOM formation. Peroxy rad-
icals in S15 and S16 (Fig. 5) can rearrange under H shift
from the w-aldehyde group and subsequent O; addition. S15
and S16 are similar with only the hydroperoxide group at
different positions. According to the scheme developed here
this should lead to the same set of isobaric products, and for
clarity we will only follow the fate of peroxy radical S15.
In the case of S15, the autoxidation mechanism would lead
to peroxy radical S18 and in a further step to peroxy radi-
cal S19. S19 terminates in the usual way or intramolecular
(Reaction R9c¢) to either ketones (S20, S21) or a hydroxy
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Figure 5. Schematics of HOM formation of 1-methyl cyclohexene.
The major products are carbonyl termination products, either S20
or S21. Higher oxidation products are minor. Peroxy radical S17

has no terminal w-aldehyde group. Peroxy radical S16 will produce
isobaric products analogous to S15.

product (S22), or a hydroperoxide (S23). The isobaric car-
bonyl termination products (S20, S21) are by far the largest
contribution in the spectrum, as hydroxy and hydroperoxy
termination products contribute only about 1-2 % in total. It
is notable that the maximum oxidation is indeed limited to
seven or eight O atoms, two less compared to the major ter-
mination products of cycloheptene.

The products of 3- and 4-methyl-cyclohexene (Tables 10,
11), as well as cycloheptene (Table 6) show similar patterns.
Methyl substitution leads only to minor variations of the cy-
cloheptene HOM pattern with the 3-methyl-hexene being lit-
tle more deviant. This could indicate steric effects, which
fade if the methyl group moves away from the double bond,
i.e., away from the molecule ends of the ring opening prod-
ucts susceptible to H shifts.

Table 9 compares the HOM of all C; cycloalkenes investi-
gated. As discussed, 1-methyl substitution leads to unique
HOM pattern wherein the highest oxidation step is only
very weakly expressed. This is likely caused by the fact
that the ring opening for 1-methyl cyclohexene leads only
to one aldehyde group, instead of two as for cycloheptene,
3-methyl-cyclohexene, and 4-methyl-cyclohexene.

In the case of 4-methyl cyclohexene (Table 11) we find
small contributions of C7H0O1; indicating that in complex
molecules, higher degrees of oxidation may be achieved. We
hypothesize that the tertiary H atom at the methyl branching
may be susceptible to H shift of peroxy groups. The observa-
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Figure 6. Comparison of deduced highest oxidized Og—peroxy rad-
ical of 1-methyl cyclohexene (S19) to analogously constructed Og—
peroxy radicals of a-pinene (S24) and A-3-carene (S25). Tertiary
H atoms in blue are explicitly shown. The H at the carbon atom
carrying the hydroperoxy group, which is shifted in Reaction (R9c)
is shown in gray. In an isomeric modification, the hydroperoxide
group at C3 could be located also at Cy.

tion of the Oqp;-carbonyl termination products suggests that
the attack on the tertiary H atom is not necessarily the final
step, as tertiary peroxy radicals cannot stabilize into ketones.
If several H atoms are susceptible to H shift of peroxy groups
— with different rates — permutation of pathways will occur
according to the respective rate coefficients. For 3-methyl-
cyclohexene, the effect of the tertiary peroxy radicals is not
so distinct, because the methyl group resides on the ¢-C atom
next to an aldehyde group from which we expect H shift any-
how.

5.3 Monoterpenes and tertiary H atoms

Tables 12 and 13 show the result for two bicyclic MT, a-
pinene (cf. Ehn et al., 2014) and A-3-carene. Both MT
contain the same methyl-substituted six-ring structure as 1-
methyl cyclohexene. In the case of 1-methyl cyclohexene,
we are quite confident that the highest peroxy radical should
look like S19 in Figs. 5 and 6. If we construct the analogous
peroxy radicals for a-pinene and A-3-carene, they should
look like S24 and S25 in Fig. 6, so the maximum oxidation
degree in analogy to the cycloalkenes should be limited as for
1-methyl-cyclohexene, i.e., either bimolecular or intramolec-
ular termination.

Comparison shows that for the MT higher oxidation de-
grees were achieved (Tables 12 and 13). While for 1-methyl
cyclohexene, the major termination product is a ketone with
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Table 14. Detected and identified dimers observed during ozonoly-
sis of cyclopentene.

m/z [Th] Formula Intensity [%]
389.0339  CjoH;4015-°NOY 44
421.0238  CyoH14014-°NOJ 100
453.0136  CyoH14046-°NOJ 2
343.0648  CjoH1609-1°NO3 24
3750547  CioH;601;-1°NO3 6

seven O atoms, a-pinene and A-3-carene generate substan-
tial amounts of ketones with nine («-pinene, A-3-carene) or
even 11 (@-pinene) O atoms. While for simple cycloalkenes
carbonyl termination products dominate (Tables 4-8), the
major termination products of ¢-pinene and 3-carene appear
at the m/z of the corresponding to hydroxy termination with
nine O atoms (presumably four OOH groups), and «-pinene
also generates the next higher hydroxy termination product
with 11 O atoms (see Tables 12 and 13).

As already indicated for 4-methyl cyclohexene, which
shows HOM with 11 O atoms, H shift from tertiary C atoms
can obviously lead to a spread of formation routes (tertiary
H atoms shown in Fig. 6). So far, MT molecules are too
complex to guess the pathways only from the observed mass
spectra. However, the fact that the dominant MT termina-
tion products are hydroxy rather than carbonyl compounds
indicates that alkoxy-involving steps may be more important
for MT than for the simpler alkenes and that ring opening
of the cyclobutyl/propyl rings is involved in HOM formation
(Rissanen et al., 2015). A relative gain in hydroxy and hy-
droperoxy termination products is also commensurable with
a higher number of peroxy radicals at tertiary C atoms, which
cannot form ketones via H-abstraction by air oxygen. Please
note that although the oxidation degree is higher than to be
expected from our formation scheme for plain Cs—C7 cy-
cloalkenes, the mass spectrometric pattern of peroxy-radical
with m/z = m, carbonyl m — 17, hydroxy m — 15, hydroper-
oxy m + 1 still applies and helps to order the analysis of the
mass spectra. We conclude that the routes to HOM for sim-
ple molecules proposed by us are basic but not sufficient to
explain HOM formation in complex molecules.

5.4 Dimers and peroxyradicals

Besides HOM with the same number of C atoms as the
precursor, we observe also HOM molecules with twice the
C atom numbers of the precursors, thus having dimer char-
acter. Table 14 lists the detected and assigned HOM dimers
from cyclopentene, which had the highest chemical turnover
(due to the fastest rate coefficient and the largest O3 concen-
tration). The peak intensities were normalized to the dom-
inant dimer. The two most abundant dimers contain even
number of O atoms and 14 H atoms. But we found also
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dimers with 16 H atoms and odd number of O atoms. The
molecular compositions discussed here are not commensu-
rable with peroxyhemiacetals (proposed by Tobias and Zie-
mann, 2000) which would have been formed by reaction of
HOM peroxy radicals and HOM carbonyl compounds, and
should have an odd number of O atoms but 14 H atoms.

Since we observe the peroxy radicals directly, it is sugges-
tive to test if the dimers are peroxides and arise from recom-
bination of two peroxy radicals according to Reaction (RS8)
(Sequence 2). We assume that two peroxy radicals recom-
bine to a peroxide under elimination of O,. Table 15 lists
the dimers expected for cyclopentene by simply permuting
all observed and some additional peroxy radicals (those with
less O-substitution, which we expect but probably are not de-
tectable for cyclopentene). The molecular formulas of dimers
which were observed are marked in bold face. The most
abundant, identified peroxy radicals (compare Table 4) are
also marked in bold face.

The dimer with the largest signal has the molecular for-
mula C19gH4014, and it can be formed by reaction of two
Cs5H70g, the dominant peroxy radical (cf. Table 4). But it is
also clear that several combinations of peroxy radical pairs
can lead to dimers with the same molecular mass. Formulas
in Table 15 set in bold face and italic indicate dimers which
involve the two most abundant peroxy radicals. We also de-
tect dimers which comprise the involvement of low O pre-
cursors (Table 15 first line, normal face). This is indicative
of their existence, although due to instrument limitations we
probably are not able to detect them. Not all combinations
are of the same likelihood. For example, C19H1401¢ is less
likely formed by dimerization of CsH7Og, which would arise
from the minor hydroxy—peroxy path, but more likely by re-
combination of CsH70g and CsH70;¢. Of course each com-
bination of suited peroxy radical pairs may contribute some-
what to the observed dimer. The findings of C19H14012,14,16
dimers in Table 14 mutually support our assignments of per-
oxy radicals as well as our assignments of dimers. It overall
supports the basic formation schemes developed in Sect. 3.

Notably, there are still the two dimers in Table 14 with
odd numbers of O atoms which contain 16 H atoms. Due to
the 16 H atoms these dimers cannot be simply formed by any
combination of the peroxy radicals detected during cyclopen-
tene ozonolysis, which carry only seven H atoms. However,
the C1oH1609 dimer may be formed as a re-combination
of the most abundant CsH7Og peroxy radical and a peroxy
radical with the molecular formula CsHgOs3. In the same
way, CioH160;1 dimers could be formed by the observed
Cs5H701¢ peroxy radical and the CsH9O3; peroxy radical.
C5HoO3 is the molecular formula of the first peroxy radical
in the oxidation chain of cyclopentene by OH. Production of
the CsHoO3 peroxy radical from cyclopentene occurs via OH
addition to one site of the double bond and addition of O, at
the other site, which is an alkyl radical site. Reactions with
OH are possible since we did not routinely quench dark OH
in the ozonolysis experiments.
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Table 15. Possible dimers produced by permutations reactions of the monomer peroxy radicals of cyclopentene. Bold face: entities were
detected. Italic: dimers were detected and arise from two most abundant peroxy radicals.

| CsH70q CsH707 CsH703 C5H709 C5H7049
CsH70¢ | C1oH14010  CioH14011  CioH14012  CioH14013  CyoH14014
CsH707 CioH14012  CioH14013  CyoH14014  CioH14045
CsH;Og CioH14014 CioH14015  CioH 14016
CsH709 C10H14016  Ci0H14017
CsH70q9 CioH14013
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Figure 7. Comparison of the dimer HOM spectra resulting from
ozonolysis of cyclopentene with CO addition (gray) and without
CO addition (blue). The fraction of dimers which involve the O3—
peroxy radical from the addition of OH to the double bond of cy-
clopentene are reduced.

As first peroxy radical in the OH-oxidation chain of cy-
clopentene, the CsHoO3 peroxy radical should be quite abun-
dant. Due to the low number of O atoms in this radical it is
not detectable with our APi-TOF-MS scheme. To test the hy-
pothesis of OH reactions being involved in the formation of
these dimers, CO was added as OH scavenger (~ 40 ppm)
in a cyclopentene ozonolysis control experiment. Figure 7
shows the overlay of the dimer spectra from cyclopentene
ozonolysis with and without CO addition.

CO addition indeed led to a decrease in the abundance
of both Hj4-HOM dimers detected at 343 and 375 Th, sus-
pected to arise from the CsHy9O3 peroxy radical. Further-
more, the abundance of CigH40i2 (detected at 389 Th)
and that of CigH4O14 (detected at 421Th) increased.
This is in accordance with suppression of the competition
by CsH9O3 from cyclopentene + OH reaction. After sup-
pression of OH more ozonolysis products in general and
more dimers by ozonolysis-only products are formed, e.g.,
CsH70g + CsH70s.
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Moreover, there are more peaks which decrease by CO ad-
dition. This means that these molecules likely involve oxi-
dation by OH radicals at some step. It is noticeable that all
peaks that decrease can be attributed to dimer structures con-
taining an odd number of O atoms (the reagent ion 15NO3_
subtracted). In contrast, dimer structures that contain an even
number of O atoms increase under CO addition, indicating
that their formation involve ozonolysis-only products.

In the monomer region, the addition of CO should in-
crease the relative contribution of hydroperoxide termina-
tion products since quenching with CO converts OH to HO»
molecules, thus increasing the HO; concentration. Docherty
et al. (2005) discussed such an effect of increasing HO; con-
centration by scavenging OH in the dark on the formation of
hydroperoxides (Reaction R4) in competition to dimer for-
mation by RO, +RO; reactions. This would be a further sup-
port of our assignment of peroxy radicals and their termina-
tion products but deserves more detailed investigation.

5.5 Role of the hydroxy peroxy path

As can be seen from the Tables 4-10, 12, 13, peroxy radi-
cals with even numbers of O atoms were often observed. In
contrast, peroxy radicals with odd numbers of O atoms as
well as their termination products were only rarely found.
We hypothesize that peroxy radicals with odd numbers of
O atoms can be formed from alkoxy radicals that undergo
an H shift (Vereecken and Peeters, 2010), and thereby form
the alkyl radical to which the O, is added. Their low abun-
dance can be understood applying basic steady-state consid-
erations. H shifts of alkoxy radicals (Reaction R6c) formed in
Reaction (R6a), and subsequent O, addition (Reaction R6d),
has to compete with the termination Reaction (R6b), if the
alkoxy C atom carries an H atom. As O» concentrations
are very high, the chemical lifetime of an alkoxy radical is
much shorter than that of a peroxy radical. This also presup-
poses that the consecutive addition of molecular oxygen after
H shifts in peroxy radicals is highly efficient.

6 Summary and conclusions

A key to our analysis was the direct observation of highly
oxidized peroxy radicals in oxidations initiated by ozone. As
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is expected in atmospheric oxidation processes, peroxy radi-
cals were the pivotal point to elucidate the pathways of HOM
formation and therewith the pathways to atmospherically rel-
evant ELVOC. Peroxy radicals are formed in ozonolysis via
the vinylhydroperoxide pathway, and are sequentially oxi-
dized by rearrangement (H shift) and subsequent addition of
molecular oxygen, renewing the peroxy radical at the next
level of oxidation (Ehn et al., 2014; Rissanen et al., 2014).
Since only a single initial oxidation step by ozone is required
and thereafter oxidation proceeds perpetuating a peroxy rad-
ical under addition of air oxygen alone, this process can be
conceived as autoxidation of the peroxy radicals.

By our experimental studies of HOM formation using se-
lected molecules with systematically varying structural prop-
erties, we deduced important steps on the route to HOM for-
mation during ozonolysis. Peroxy radicals are formed via the
vinylhydroperoxide path. Initially, aldehyde functionality fa-
cilitates the shift of an H atom from a C—H bond to a peroxy
radical group > COO°. As a consequence peroxy-carboxyl
radicals are formed, which on further H shift reactions form
percarboxylic acid groups. These are able to activate the
H atoms on their neighbor «-C atom. Thus, in the ozonolysis
of simple endocyclic alkenes, up to 10 O atoms can be in-
corporated in a peroxy radical, of those 6 O atoms by the se-
quential autoxidation mechanism. We conclude that interme-
diates with two aldehyde end groups form di-percarboxylic
acids with further carbonyl, hydroxy or hydroperoxide func-
tionalities. We observed that presence of tertiary H atoms by
methyl substitution or constraint ring structures, like for «-
pinene and A-3-carene, leads to more options for the autox-
idation mechanism to proceed. This is allowing for addition
of more than six O atoms (here eight O atoms) and a widen-
ing of the termination product spectrum.

An aldehyde group at the w-end of the initial peroxy rad-
ical S2 favors the achievement of the highest oxidation de-
gree. In the cases investigated here, methyl, hydroxy and
keto groups are not efficient in promoting H shift of C-H
bonds at neighboring «-C atoms to peroxy groups. The 1,4
H shift from the aldehyde group to the peroxy radical in
those molecules (S5, S6, S7) may lead to a hydroperoxide,
percarboxylic acid or hydroperoxy carboxylic acid, but then
likely the autoxidation stops. If such molecules are formed,
we may not be able to detect them with the NO; -APi-TOF-
MS. A key finding for the role of w-substitution is that (Z)-
6-nonenal is forming the same major HOM as cyclohexene
(Rissanen et al., 2014).

In the first few steps, as long as H atoms susceptible to
H shift are available, autoxidation can compete with the ter-
mination reactions. At later stages termination reactions be-
come more important and carbonyl, hydroxy, and hydroper-
oxy termination products are formed in our NO poor system.
Self-reactions of the HOM peroxy radicals lead to another
class of dimer termination products, very likely peroxides.
The elemental composition and relative abundance of the
dimer structures indicate involvement of the monomer per-
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oxy radicals of all oxidation stages in their formation. The
most abundant dimers always involve the most abundant per-
oxy radicals. In addition, we found dimers from the most
abundant HOM peroxy radicals with the O3—peroxy radicals
formed in the first step after attack addition of OH to the dou-
ble bond. These disappeared when OH was quenched by CO.
In general, quenching with CO suppresses the OH pathways
and shifts termination towards HOO, as would be expected.
Overall the mass spectrometric patterns of termination prod-
ucts and dimer formation support the pivotal role of highly
oxidized peroxy radicals and that we indeed observe them
directly.

We observe peroxy radicals with an odd number of oxy-
gen; however, during ozonolysis their concentration were mi-
nor. The observations of peroxy radicals with an odd number
of oxygen can be explained by the same concepts if we allow
for a side pathway involving one intermediate step of alkoxy
rearrangement (H shift in an alkoxy radical, thereby forma-
tion of an alkyl radical and O, addition).

Considering the degree of oxidation as well as the func-
tional groups in HOM, monomers and even more so dimers
must have very low vapor pressures. Thus, HOM must play
as ELVOC an important role in particle formation and SOA
condensation (Ehn et al., 2014). The estimated molecular
yields of ELVOC for «-pinene of 7% (Ehn et al., 2014)
and cyclcohexene of 4 % (Rissanen et al., 2014) indicate that
ELVOC formation is in any case a minor part from the view-
point of gas-phase chemistry. However, considering molar
yields of a few percent and the high degree of oxidation, a
substantial part of atmospheric SOA mass should be formed
from ELVOC. The organic fraction of particles at early stages
of formation should consist nearly exclusively of ELVOC
(Ehn et al., 2014).

Actually, in JPAC we earlier observed linear growth curves
in SOA formation, which we did not understand at the time.
A characteristic of those experiments was that particle for-
mation was induced based on relatively low BVOC input
and in presence of the BVOC-ozonolysis products (Mentel
et al., 2009; Lang Yona et al., 2010). SOA growth curves
of quasi non-volatile reaction products should be linear as
Raoult’s law does not apply, and everything condenses. (The
SOA vyield curves were still curved as there was a threshold
before particle formation started (Mentel et al., 2009).)

An open question is the fate of HOM in the particu-
late phase. It seems obvious that the multifunctional HOM
will not survive, but undergo condensation reactions. The
products of those are probably not retrievable by thermo-
evaporation methods. It also raises the question how HOM-
based SOA relates to the recently discussed glassy state of
SOA particles (Koop et al., 2011; Shiraiwa et al., 2013; Vir-
tanen et al., 2010; Zobrist et al., 2008).

We are confident that we deduced the main route of atmo-
spheric oxidation that leads to “quasi” instantaneous forma-
tion of highly oxidized organic molecules. We are also con-
fident that we deduced the major functionalization of HOM.
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Of course in our deductions there are still positive gaps (ob-
servations which we cannot explain with our current con-
cepts) and negative gaps (missing structures that we would
expect). But even at that level it is evident that formation
of HOM is likely a general phenomenon, which was over-
looked until very recently. To fully explore the general im-
pact of HOM, we need also to understand the role of OH
oxidation and how the chemical systems behave at reason-
ably high NO, concentrations. CI-APi-TOF-MS constitutes
an enormous progress as it allows for unambiguous deter-
mination of the molecular formulas of HOM in laboratory
experiments. However, for detailed mechanism development
one would need also structural information and quantifica-
tion of (all) intermediates and products.
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