000202160 001__ 202160
000202160 005__ 20240610115650.0
000202160 0247_ $$2doi$$a10.1038/nsmb.3002
000202160 0247_ $$2WOS$$aWOS:000354094700012
000202160 0247_ $$2altmetric$$aaltmetric:3892732
000202160 0247_ $$2pmid$$apmid:25849142
000202160 037__ $$aFZJ-2015-04449
000202160 041__ $$aEnglish
000202160 082__ $$a570
000202160 1001_ $$0P:(DE-Juel1)165798$$aGushchin, Ivan$$b0
000202160 245__ $$aCrystal structure of a light-driven sodium pump
000202160 260__ $$aNew York, NY$$bNature America$$c2015
000202160 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453974944_29962
000202160 3367_ $$2DataCite$$aOutput Types/Journal article
000202160 3367_ $$00$$2EndNote$$aJournal Article
000202160 3367_ $$2BibTeX$$aARTICLE
000202160 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202160 3367_ $$2DRIVER$$aarticle
000202160 520__ $$aRecently, the first known light-driven sodium pumps, from the microbial rhodopsin family, were discovered. We have solved the structure of one of them, Krokinobacter eikastus ​rhodopsin 2 (​KR2), in the monomeric blue state and in two pentameric red states, at resolutions of 1.45 Å and 2.2 and 2.8 Å, respectively. The structures reveal the ion-translocation pathway and show that the sodium ion is bound outside the protein at the oligomerization interface, that the ion-release cavity is capped by a unique N-terminal α-helix and that the ion-uptake cavity is unexpectedly large and open to the surface. Obstruction of the cavity with the mutation G263F imparts ​KR2 with the ability to pump potassium. These results pave the way for the understanding and rational design of cation pumps with new specific properties valuable for optogenetics.
000202160 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000202160 542__ $$2Crossref$$i2015-04-06$$uhttp://www.springer.com/tdm
000202160 7001_ $$0P:(DE-Juel1)143908$$aShevchenko, Vitaly$$b1
000202160 7001_ $$0P:(DE-HGF)0$$aPolovinkin, V.$$b2
000202160 7001_ $$0P:(DE-Juel1)165629$$aKovalev, Kirill$$b3
000202160 7001_ $$0P:(DE-Juel1)165628$$aAlekseev, Alexey$$b4
000202160 7001_ $$0P:(DE-HGF)0$$aRound, E.$$b5
000202160 7001_ $$0P:(DE-Juel1)144613$$aBorshchevskiy, Valentin$$b6
000202160 7001_ $$0P:(DE-Juel1)131949$$aBalandin, Taras$$b7
000202160 7001_ $$0P:(DE-HGF)0$$aPopov, A.$$b8
000202160 7001_ $$0P:(DE-Juel1)131924$$aGensch, Thomas$$b9
000202160 7001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b10
000202160 7001_ $$0P:(DE-HGF)0$$aBamann, C.$$b11
000202160 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b12
000202160 7001_ $$0P:(DE-Juel1)131957$$aBüldt, Georg$$b13
000202160 7001_ $$0P:(DE-HGF)0$$aBamberg, E.$$b14
000202160 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b15$$eCorresponding Author
000202160 77318 $$2Crossref$$3journal-article$$a10.1038/nsmb.3002$$bSpringer Science and Business Media LLC$$d2015-04-06$$n5$$p390-395$$tNature Structural & Molecular Biology$$v22$$x1545-9993$$y2015
000202160 773__ $$0PERI:(DE-600)2131437-8$$a10.1038/nsmb.3002$$n5$$p390-395$$tNature structural & molecular biology$$v22$$x1545-9993$$y2015
000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.pdf$$yRestricted
000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.gif?subformat=icon$$xicon$$yRestricted
000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202160 909CO $$ooai:juser.fz-juelich.de:202160$$pVDB
000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165798$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143908$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165629$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165628$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131949$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131924$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131957$$aForschungszentrum Jülich GmbH$$b13$$kFZJ
000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich GmbH$$b15$$kFZJ
000202160 9130_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vStructural Biology$$x0
000202160 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000202160 9141_ $$y2015
000202160 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202160 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202160 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202160 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202160 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202160 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202160 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000202160 920__ $$lyes
000202160 9201_ $$0I:(DE-Juel1)ICS-5-20110106$$kICS-5$$lMolekulare Biophysik$$x0
000202160 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x1
000202160 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x2
000202160 980__ $$ajournal
000202160 980__ $$aVDB
000202160 980__ $$aI:(DE-Juel1)ICS-5-20110106
000202160 980__ $$aI:(DE-Juel1)ICS-6-20110106
000202160 980__ $$aI:(DE-Juel1)ICS-4-20110106
000202160 980__ $$aUNRESTRICTED
000202160 981__ $$aI:(DE-Juel1)IBI-6-20200312
000202160 981__ $$aI:(DE-Juel1)ER-C-3-20170113
000202160 981__ $$aI:(DE-Juel1)IBI-7-20200312
000202160 981__ $$aI:(DE-Juel1)IBI-1-20200312
000202160 981__ $$aI:(DE-Juel1)ICS-6-20110106
000202160 981__ $$aI:(DE-Juel1)ICS-4-20110106
000202160 999C5 $$2Crossref$$uAlberts, B. et al. Molecular Biology of the Cell (Garland Science, 2002).
000202160 999C5 $$1D Oesterhelt$$2Crossref$$9-- missing cx lookup --$$a10.1038/newbio233149a0$$p149 -$$tNat. New Biol.$$uOesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233, 149–152 (1971).$$v233$$y1971
000202160 999C5 $$1B Schobert$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9258(18)34020-1$$p10306 -$$tJ. Biol. Chem.$$uSchobert, B. & Lanyi, J.K. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257, 10306–10313 (1982).$$v257$$y1982
000202160 999C5 $$1OP Ernst$$2Crossref$$9-- missing cx lookup --$$a10.1021/cr4003769$$p126 -$$tChem. Rev.$$uErnst, O.P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014).$$v114$$y2014
000202160 999C5 $$1M Grote$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbabio.2013.08.006$$p533 -$$tBiochim. Biophys. Acta$$uGrote, M., Engelhard, M. & Hegemann, P. Of ion pumps, sensors and channels: perspectives on microbial rhodopsins between science and history. Biochim. Biophys. Acta 1837, 533–545 (2014).$$v1837$$y2014
000202160 999C5 $$1S-K Kwon$$2Crossref$$9-- missing cx lookup --$$a10.1093/gbe/evs134$$p187 -$$tGenome Biol. Evol.$$uKwon, S.-K. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol. Evol. 5, 187–199 (2013).$$v5$$y2013
000202160 999C5 $$1K Inoue$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms2689$$p1678 -$$tNat. Commun.$$uInoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).$$v4$$y2013
000202160 999C5 $$1EM Landau$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.93.25.14532$$p14532 -$$tProc. Natl. Acad. Sci. USA$$uLandau, E.M. & Rosenbusch, J.P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93, 14532–14535 (1996).$$v93$$y1996
000202160 999C5 $$1M Caffrey$$2Crossref$$9-- missing cx lookup --$$a10.1038/nprot.2009.31$$p706 -$$tNat. Protoc.$$uCaffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).$$v4$$y2009
000202160 999C5 $$1VI Gordeliy$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01109$$p484 -$$tNature$$uGordeliy, V.I. et al. Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex. Nature 419, 484–487 (2002).$$v419$$y2002
000202160 999C5 $$1JK Lanyi$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.physiol.66.032102.150049$$p665 -$$tAnnu. Rev. Physiol.$$uLanyi, J.K. Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665–688 (2004).$$v66$$y2004
000202160 999C5 $$1C Bamann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbabio.2013.09.010$$p614 -$$tBiochim. Biophys. Acta$$uBamann, C., Bamberg, E., Wachtveitl, J. & Glaubitz, C. Proteorhodopsin. Biochim. Biophys. Acta 1837, 614–625 (2014).$$v1837$$y2014
000202160 999C5 $$1M Kolbe$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.288.5470.1390$$p1390 -$$tScience$$uKolbe, M., Besir, H., Essen, L.-O. & Oesterhelt, D. Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288, 1390–1396 (2000).$$v288$$y2000
000202160 999C5 $$1T Kouyama$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmb.2009.11.061$$p564 -$$tJ. Mol. Biol.$$uKouyama, T. et al. Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J. Mol. Biol. 396, 564–579 (2010).$$v396$$y2010
000202160 999C5 $$1H Luecke$$2Crossref$$9-- missing cx lookup --$$a10.1006/jmbi.1999.3027$$p899 -$$tJ. Mol. Biol.$$uLuecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P. & Lanyi, J.K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911 (1999).$$v291$$y1999
000202160 999C5 $$1H Luecke$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0807162105$$p16561 -$$tProc. Natl. Acad. Sci. USA$$uLuecke, H. et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA 105, 16561–16565 (2008).$$v105$$y2008
000202160 999C5 $$1I Gushchin$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1221629110$$p12631 -$$tProc. Natl. Acad. Sci. USA$$uGushchin, I. et al. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc. Natl. Acad. Sci. USA 110, 12631–12636 (2013).$$v110$$y2013
000202160 999C5 $$1G Kuppuraj$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp807972e$$p2952 -$$tJ. Phys. Chem. B$$uKuppuraj, G., Dudev, M. & Lim, C. Factors governing metal-ligand distances and coordination geometries of metal complexes. J. Phys. Chem. B 113, 2952–2960 (2009).$$v113$$y2009
000202160 999C5 $$1SP Balashov$$2Crossref$$9-- missing cx lookup --$$a10.1021/bi501064n$$p7549 -$$tBiochemistry$$uBalashov, S.P. et al. Light-driven Na+ pump from Gillisia limnaea: a high-affinity Na+ binding site is formed transiently in the photocycle. Biochemistry 53, 7549–7561 (2014).$$v53$$y2014
000202160 999C5 $$1T Ran$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444913017575$$p1965 -$$tActa Crystallogr. D Biol. Crystallogr.$$uRan, T. et al. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr. D Biol. Crystallogr. 69, 1965–1980 (2013).$$v69$$y2013
000202160 999C5 $$1T Kouyama$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmb.2003.10.068$$p531 -$$tJ. Mol. Biol.$$uKouyama, T., Nishikawa, T., Tokuhisa, T. & Okumura, H. Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. J. Mol. Biol. 335, 531–546 (2004).$$v335$$y2004
000202160 999C5 $$1MA Lomize$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkr703$$pD370 -$$tNucleic Acids Res.$$uLomize, M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I. & Lomize, A.L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).$$v40$$y2012
000202160 999C5 $$1BK Ho$$2Crossref$$9-- missing cx lookup --$$a10.1186/1472-6807-8-49$$p49 -$$tBMC Struct. Biol.$$uHo, B.K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).$$v8$$y2008
000202160 999C5 $$1FW Studier$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pep.2005.01.016$$p207 -$$tProtein Expr. Purif.$$uStudier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).$$v41$$y2005
000202160 999C5 $$1A Royant$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889807044196$$p1105 -$$tJ. Appl. Crystallogr.$$uRoyant, A. et al. Advances in spectroscopic methods for biological crystals. 1. Fluorescence lifetime measurements. J. Appl. Crystallogr. 40, 1105–1112 (2007).$$v40$$y2007
000202160 999C5 $$1RR Birge$$2Crossref$$9-- missing cx lookup --$$a10.1016/0005-2728(90)90163-X$$p293 -$$tBiochim. Biophys. Acta$$uBirge, R.R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim. Biophys. Acta 1016, 293–327 (1990).$$v1016$$y1990
000202160 999C5 $$1DE Metzler$$2Crossref$$9-- missing cx lookup --$$a10.1016/0042-6989(78)90235-3$$p1417 -$$tVision Res.$$uMetzler, D.E. & Harris, C.M. Shapes of spectral bands of visual pigments. Vision Res. 18, 1417–1420 (1978).$$v18$$y1978
000202160 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4020-6316-9_4$$uLeslie, A.G.W. & Powell, H.R. in Evolving Methods for Macromolecular Crystallography (eds. Read, R.J. & Sussman, J.L.) 41–51 (Springer Netherlands, 2007).
000202160 999C5 $$1MD Winn$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444910045749$$p235 -$$tActa Crystallogr. D Biol. Crystallogr.$$uWinn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).$$v67$$y2011
000202160 999C5 $$1A Vagin$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444909042589$$p22 -$$tActa Crystallogr. D Biol. Crystallogr.$$uVagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).$$v66$$y2010
000202160 999C5 $$1F Kiefer$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkn750$$pD387 -$$tNucleic Acids Res.$$uKiefer, F., Arnold, K., Kunzli, M., Bordoli, L. & Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 37, D387–D392 (2009).$$v37$$y2009
000202160 999C5 $$1GN Murshudov$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444911001314$$p355 -$$tActa Crystallogr. D Biol. Crystallogr.$$uMurshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).$$v67$$y2011
000202160 999C5 $$1PD Adams$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444909052925$$p213 -$$tActa Crystallogr. D Biol. Crystallogr.$$uAdams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).$$v66$$y2010
000202160 999C5 $$1P Emsley$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444904019158$$p2126 -$$tActa Crystallogr. D Biol. Crystallogr.$$uEmsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).$$v60$$y2004
000202160 999C5 $$1E Bamberg$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02426663$$p277 -$$tBiophys. Struct. Mech.$$uBamberg, E. et al. Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Biophys. Struct. Mech. 5, 277–292 (1979).$$v5$$y1979