000202160 001__ 202160 000202160 005__ 20240610115650.0 000202160 0247_ $$2doi$$a10.1038/nsmb.3002 000202160 0247_ $$2WOS$$aWOS:000354094700012 000202160 0247_ $$2altmetric$$aaltmetric:3892732 000202160 0247_ $$2pmid$$apmid:25849142 000202160 037__ $$aFZJ-2015-04449 000202160 041__ $$aEnglish 000202160 082__ $$a570 000202160 1001_ $$0P:(DE-Juel1)165798$$aGushchin, Ivan$$b0 000202160 245__ $$aCrystal structure of a light-driven sodium pump 000202160 260__ $$aNew York, NY$$bNature America$$c2015 000202160 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453974944_29962 000202160 3367_ $$2DataCite$$aOutput Types/Journal article 000202160 3367_ $$00$$2EndNote$$aJournal Article 000202160 3367_ $$2BibTeX$$aARTICLE 000202160 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000202160 3367_ $$2DRIVER$$aarticle 000202160 520__ $$aRecently, the first known light-driven sodium pumps, from the microbial rhodopsin family, were discovered. We have solved the structure of one of them, Krokinobacter eikastus rhodopsin 2 (KR2), in the monomeric blue state and in two pentameric red states, at resolutions of 1.45 Å and 2.2 and 2.8 Å, respectively. The structures reveal the ion-translocation pathway and show that the sodium ion is bound outside the protein at the oligomerization interface, that the ion-release cavity is capped by a unique N-terminal α-helix and that the ion-uptake cavity is unexpectedly large and open to the surface. Obstruction of the cavity with the mutation G263F imparts KR2 with the ability to pump potassium. These results pave the way for the understanding and rational design of cation pumps with new specific properties valuable for optogenetics. 000202160 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0 000202160 542__ $$2Crossref$$i2015-04-06$$uhttp://www.springer.com/tdm 000202160 7001_ $$0P:(DE-Juel1)143908$$aShevchenko, Vitaly$$b1 000202160 7001_ $$0P:(DE-HGF)0$$aPolovinkin, V.$$b2 000202160 7001_ $$0P:(DE-Juel1)165629$$aKovalev, Kirill$$b3 000202160 7001_ $$0P:(DE-Juel1)165628$$aAlekseev, Alexey$$b4 000202160 7001_ $$0P:(DE-HGF)0$$aRound, E.$$b5 000202160 7001_ $$0P:(DE-Juel1)144613$$aBorshchevskiy, Valentin$$b6 000202160 7001_ $$0P:(DE-Juel1)131949$$aBalandin, Taras$$b7 000202160 7001_ $$0P:(DE-HGF)0$$aPopov, A.$$b8 000202160 7001_ $$0P:(DE-Juel1)131924$$aGensch, Thomas$$b9 000202160 7001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b10 000202160 7001_ $$0P:(DE-HGF)0$$aBamann, C.$$b11 000202160 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b12 000202160 7001_ $$0P:(DE-Juel1)131957$$aBüldt, Georg$$b13 000202160 7001_ $$0P:(DE-HGF)0$$aBamberg, E.$$b14 000202160 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b15$$eCorresponding Author 000202160 77318 $$2Crossref$$3journal-article$$a10.1038/nsmb.3002$$bSpringer Science and Business Media LLC$$d2015-04-06$$n5$$p390-395$$tNature Structural & Molecular Biology$$v22$$x1545-9993$$y2015 000202160 773__ $$0PERI:(DE-600)2131437-8$$a10.1038/nsmb.3002$$n5$$p390-395$$tNature structural & molecular biology$$v22$$x1545-9993$$y2015 000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.pdf$$yRestricted 000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.gif?subformat=icon$$xicon$$yRestricted 000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-180$$xicon-180$$yRestricted 000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-640$$xicon-640$$yRestricted 000202160 8564_ $$uhttps://juser.fz-juelich.de/record/202160/files/nsmb.3002.pdf?subformat=pdfa$$xpdfa$$yRestricted 000202160 909CO $$ooai:juser.fz-juelich.de:202160$$pVDB 000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165798$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143908$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165629$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165628$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131949$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131924$$aForschungszentrum Jülich GmbH$$b9$$kFZJ 000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich GmbH$$b10$$kFZJ 000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich GmbH$$b12$$kFZJ 000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131957$$aForschungszentrum Jülich GmbH$$b13$$kFZJ 000202160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich GmbH$$b15$$kFZJ 000202160 9130_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vStructural Biology$$x0 000202160 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0 000202160 9141_ $$y2015 000202160 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000202160 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000202160 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000202160 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000202160 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000202160 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000202160 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000202160 920__ $$lyes 000202160 9201_ $$0I:(DE-Juel1)ICS-5-20110106$$kICS-5$$lMolekulare Biophysik$$x0 000202160 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x1 000202160 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x2 000202160 980__ $$ajournal 000202160 980__ $$aVDB 000202160 980__ $$aI:(DE-Juel1)ICS-5-20110106 000202160 980__ $$aI:(DE-Juel1)ICS-6-20110106 000202160 980__ $$aI:(DE-Juel1)ICS-4-20110106 000202160 980__ $$aUNRESTRICTED 000202160 981__ $$aI:(DE-Juel1)IBI-6-20200312 000202160 981__ $$aI:(DE-Juel1)ER-C-3-20170113 000202160 981__ $$aI:(DE-Juel1)IBI-7-20200312 000202160 981__ $$aI:(DE-Juel1)IBI-1-20200312 000202160 981__ $$aI:(DE-Juel1)ICS-6-20110106 000202160 981__ $$aI:(DE-Juel1)ICS-4-20110106 000202160 999C5 $$2Crossref$$uAlberts, B. et al. Molecular Biology of the Cell (Garland Science, 2002). 000202160 999C5 $$1D Oesterhelt$$2Crossref$$9-- missing cx lookup --$$a10.1038/newbio233149a0$$p149 -$$tNat. New Biol.$$uOesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233, 149–152 (1971).$$v233$$y1971 000202160 999C5 $$1B Schobert$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9258(18)34020-1$$p10306 -$$tJ. Biol. Chem.$$uSchobert, B. & Lanyi, J.K. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257, 10306–10313 (1982).$$v257$$y1982 000202160 999C5 $$1OP Ernst$$2Crossref$$9-- missing cx lookup --$$a10.1021/cr4003769$$p126 -$$tChem. Rev.$$uErnst, O.P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014).$$v114$$y2014 000202160 999C5 $$1M Grote$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbabio.2013.08.006$$p533 -$$tBiochim. Biophys. Acta$$uGrote, M., Engelhard, M. & Hegemann, P. Of ion pumps, sensors and channels: perspectives on microbial rhodopsins between science and history. Biochim. Biophys. Acta 1837, 533–545 (2014).$$v1837$$y2014 000202160 999C5 $$1S-K Kwon$$2Crossref$$9-- missing cx lookup --$$a10.1093/gbe/evs134$$p187 -$$tGenome Biol. Evol.$$uKwon, S.-K. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol. Evol. 5, 187–199 (2013).$$v5$$y2013 000202160 999C5 $$1K Inoue$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms2689$$p1678 -$$tNat. Commun.$$uInoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).$$v4$$y2013 000202160 999C5 $$1EM Landau$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.93.25.14532$$p14532 -$$tProc. Natl. Acad. Sci. USA$$uLandau, E.M. & Rosenbusch, J.P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93, 14532–14535 (1996).$$v93$$y1996 000202160 999C5 $$1M Caffrey$$2Crossref$$9-- missing cx lookup --$$a10.1038/nprot.2009.31$$p706 -$$tNat. Protoc.$$uCaffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).$$v4$$y2009 000202160 999C5 $$1VI Gordeliy$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01109$$p484 -$$tNature$$uGordeliy, V.I. et al. Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex. Nature 419, 484–487 (2002).$$v419$$y2002 000202160 999C5 $$1JK Lanyi$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.physiol.66.032102.150049$$p665 -$$tAnnu. Rev. Physiol.$$uLanyi, J.K. Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665–688 (2004).$$v66$$y2004 000202160 999C5 $$1C Bamann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbabio.2013.09.010$$p614 -$$tBiochim. Biophys. Acta$$uBamann, C., Bamberg, E., Wachtveitl, J. & Glaubitz, C. Proteorhodopsin. Biochim. Biophys. Acta 1837, 614–625 (2014).$$v1837$$y2014 000202160 999C5 $$1M Kolbe$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.288.5470.1390$$p1390 -$$tScience$$uKolbe, M., Besir, H., Essen, L.-O. & Oesterhelt, D. Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288, 1390–1396 (2000).$$v288$$y2000 000202160 999C5 $$1T Kouyama$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmb.2009.11.061$$p564 -$$tJ. Mol. Biol.$$uKouyama, T. et al. Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J. Mol. Biol. 396, 564–579 (2010).$$v396$$y2010 000202160 999C5 $$1H Luecke$$2Crossref$$9-- missing cx lookup --$$a10.1006/jmbi.1999.3027$$p899 -$$tJ. Mol. Biol.$$uLuecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P. & Lanyi, J.K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911 (1999).$$v291$$y1999 000202160 999C5 $$1H Luecke$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0807162105$$p16561 -$$tProc. Natl. Acad. Sci. USA$$uLuecke, H. et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA 105, 16561–16565 (2008).$$v105$$y2008 000202160 999C5 $$1I Gushchin$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1221629110$$p12631 -$$tProc. Natl. Acad. Sci. USA$$uGushchin, I. et al. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc. Natl. Acad. Sci. USA 110, 12631–12636 (2013).$$v110$$y2013 000202160 999C5 $$1G Kuppuraj$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp807972e$$p2952 -$$tJ. Phys. Chem. B$$uKuppuraj, G., Dudev, M. & Lim, C. Factors governing metal-ligand distances and coordination geometries of metal complexes. J. Phys. Chem. B 113, 2952–2960 (2009).$$v113$$y2009 000202160 999C5 $$1SP Balashov$$2Crossref$$9-- missing cx lookup --$$a10.1021/bi501064n$$p7549 -$$tBiochemistry$$uBalashov, S.P. et al. Light-driven Na+ pump from Gillisia limnaea: a high-affinity Na+ binding site is formed transiently in the photocycle. Biochemistry 53, 7549–7561 (2014).$$v53$$y2014 000202160 999C5 $$1T Ran$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444913017575$$p1965 -$$tActa Crystallogr. D Biol. Crystallogr.$$uRan, T. et al. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr. D Biol. Crystallogr. 69, 1965–1980 (2013).$$v69$$y2013 000202160 999C5 $$1T Kouyama$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmb.2003.10.068$$p531 -$$tJ. Mol. Biol.$$uKouyama, T., Nishikawa, T., Tokuhisa, T. & Okumura, H. Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. J. Mol. Biol. 335, 531–546 (2004).$$v335$$y2004 000202160 999C5 $$1MA Lomize$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkr703$$pD370 -$$tNucleic Acids Res.$$uLomize, M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I. & Lomize, A.L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).$$v40$$y2012 000202160 999C5 $$1BK Ho$$2Crossref$$9-- missing cx lookup --$$a10.1186/1472-6807-8-49$$p49 -$$tBMC Struct. Biol.$$uHo, B.K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).$$v8$$y2008 000202160 999C5 $$1FW Studier$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pep.2005.01.016$$p207 -$$tProtein Expr. Purif.$$uStudier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).$$v41$$y2005 000202160 999C5 $$1A Royant$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889807044196$$p1105 -$$tJ. Appl. Crystallogr.$$uRoyant, A. et al. Advances in spectroscopic methods for biological crystals. 1. Fluorescence lifetime measurements. J. Appl. Crystallogr. 40, 1105–1112 (2007).$$v40$$y2007 000202160 999C5 $$1RR Birge$$2Crossref$$9-- missing cx lookup --$$a10.1016/0005-2728(90)90163-X$$p293 -$$tBiochim. Biophys. Acta$$uBirge, R.R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim. Biophys. Acta 1016, 293–327 (1990).$$v1016$$y1990 000202160 999C5 $$1DE Metzler$$2Crossref$$9-- missing cx lookup --$$a10.1016/0042-6989(78)90235-3$$p1417 -$$tVision Res.$$uMetzler, D.E. & Harris, C.M. Shapes of spectral bands of visual pigments. Vision Res. 18, 1417–1420 (1978).$$v18$$y1978 000202160 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4020-6316-9_4$$uLeslie, A.G.W. & Powell, H.R. in Evolving Methods for Macromolecular Crystallography (eds. Read, R.J. & Sussman, J.L.) 41–51 (Springer Netherlands, 2007). 000202160 999C5 $$1MD Winn$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444910045749$$p235 -$$tActa Crystallogr. D Biol. Crystallogr.$$uWinn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).$$v67$$y2011 000202160 999C5 $$1A Vagin$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444909042589$$p22 -$$tActa Crystallogr. D Biol. Crystallogr.$$uVagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).$$v66$$y2010 000202160 999C5 $$1F Kiefer$$2Crossref$$9-- missing cx lookup --$$a10.1093/nar/gkn750$$pD387 -$$tNucleic Acids Res.$$uKiefer, F., Arnold, K., Kunzli, M., Bordoli, L. & Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 37, D387–D392 (2009).$$v37$$y2009 000202160 999C5 $$1GN Murshudov$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444911001314$$p355 -$$tActa Crystallogr. D Biol. Crystallogr.$$uMurshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).$$v67$$y2011 000202160 999C5 $$1PD Adams$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444909052925$$p213 -$$tActa Crystallogr. D Biol. Crystallogr.$$uAdams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).$$v66$$y2010 000202160 999C5 $$1P Emsley$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444904019158$$p2126 -$$tActa Crystallogr. D Biol. Crystallogr.$$uEmsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).$$v60$$y2004 000202160 999C5 $$1E Bamberg$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02426663$$p277 -$$tBiophys. Struct. Mech.$$uBamberg, E. et al. Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Biophys. Struct. Mech. 5, 277–292 (1979).$$v5$$y1979