001     202160
005     20240610115650.0
024 7 _ |a 10.1038/nsmb.3002
|2 doi
024 7 _ |a WOS:000354094700012
|2 WOS
024 7 _ |a altmetric:3892732
|2 altmetric
024 7 _ |a pmid:25849142
|2 pmid
037 _ _ |a FZJ-2015-04449
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Gushchin, Ivan
|0 P:(DE-Juel1)165798
|b 0
245 _ _ |a Crystal structure of a light-driven sodium pump
260 _ _ |a New York, NY
|c 2015
|b Nature America
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1453974944_29962
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Recently, the first known light-driven sodium pumps, from the microbial rhodopsin family, were discovered. We have solved the structure of one of them, Krokinobacter eikastus ​rhodopsin 2 (​KR2), in the monomeric blue state and in two pentameric red states, at resolutions of 1.45 Å and 2.2 and 2.8 Å, respectively. The structures reveal the ion-translocation pathway and show that the sodium ion is bound outside the protein at the oligomerization interface, that the ion-release cavity is capped by a unique N-terminal α-helix and that the ion-uptake cavity is unexpectedly large and open to the surface. Obstruction of the cavity with the mutation G263F imparts ​KR2 with the ability to pump potassium. These results pave the way for the understanding and rational design of cation pumps with new specific properties valuable for optogenetics.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
542 _ _ |i 2015-04-06
|2 Crossref
|u http://www.springer.com/tdm
700 1 _ |a Shevchenko, Vitaly
|0 P:(DE-Juel1)143908
|b 1
700 1 _ |a Polovinkin, V.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kovalev, Kirill
|0 P:(DE-Juel1)165629
|b 3
700 1 _ |a Alekseev, Alexey
|0 P:(DE-Juel1)165628
|b 4
700 1 _ |a Round, E.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Borshchevskiy, Valentin
|0 P:(DE-Juel1)144613
|b 6
700 1 _ |a Balandin, Taras
|0 P:(DE-Juel1)131949
|b 7
700 1 _ |a Popov, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 9
700 1 _ |a Fahlke, Christoph
|0 P:(DE-Juel1)136837
|b 10
700 1 _ |a Bamann, C.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 12
700 1 _ |a Büldt, Georg
|0 P:(DE-Juel1)131957
|b 13
700 1 _ |a Bamberg, E.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Gordeliy, Valentin
|0 P:(DE-Juel1)131964
|b 15
|e Corresponding Author
773 1 8 |a 10.1038/nsmb.3002
|b Springer Science and Business Media LLC
|d 2015-04-06
|n 5
|p 390-395
|3 journal-article
|2 Crossref
|t Nature Structural & Molecular Biology
|v 22
|y 2015
|x 1545-9993
773 _ _ |a 10.1038/nsmb.3002
|0 PERI:(DE-600)2131437-8
|n 5
|p 390-395
|t Nature structural & molecular biology
|v 22
|y 2015
|x 1545-9993
856 4 _ |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202160
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165798
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143908
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165629
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165628
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131949
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131924
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)136837
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)132029
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)131957
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)131964
913 0 _ |a DE-HGF
|b Schlüsseltechnologien
|l BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-452
|2 G:(DE-HGF)POF2-400
|v Structural Biology
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-5-20110106
|k ICS-5
|l Molekulare Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-5-20110106
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-6-20200312
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)IBI-1-20200312
981 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)ICS-4-20110106
999 C 5 |2 Crossref
|u Alberts, B. et al. Molecular Biology of the Cell (Garland Science, 2002).
999 C 5 |a 10.1038/newbio233149a0
|9 -- missing cx lookup --
|1 D Oesterhelt
|p 149 -
|2 Crossref
|u Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233, 149–152 (1971).
|t Nat. New Biol.
|v 233
|y 1971
999 C 5 |a 10.1016/S0021-9258(18)34020-1
|9 -- missing cx lookup --
|1 B Schobert
|p 10306 -
|2 Crossref
|u Schobert, B. & Lanyi, J.K. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257, 10306–10313 (1982).
|t J. Biol. Chem.
|v 257
|y 1982
999 C 5 |a 10.1021/cr4003769
|9 -- missing cx lookup --
|1 OP Ernst
|p 126 -
|2 Crossref
|u Ernst, O.P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014).
|t Chem. Rev.
|v 114
|y 2014
999 C 5 |a 10.1016/j.bbabio.2013.08.006
|9 -- missing cx lookup --
|1 M Grote
|p 533 -
|2 Crossref
|u Grote, M., Engelhard, M. & Hegemann, P. Of ion pumps, sensors and channels: perspectives on microbial rhodopsins between science and history. Biochim. Biophys. Acta 1837, 533–545 (2014).
|t Biochim. Biophys. Acta
|v 1837
|y 2014
999 C 5 |a 10.1093/gbe/evs134
|9 -- missing cx lookup --
|1 S-K Kwon
|p 187 -
|2 Crossref
|u Kwon, S.-K. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol. Evol. 5, 187–199 (2013).
|t Genome Biol. Evol.
|v 5
|y 2013
999 C 5 |a 10.1038/ncomms2689
|9 -- missing cx lookup --
|1 K Inoue
|p 1678 -
|2 Crossref
|u Inoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).
|t Nat. Commun.
|v 4
|y 2013
999 C 5 |a 10.1073/pnas.93.25.14532
|9 -- missing cx lookup --
|1 EM Landau
|p 14532 -
|2 Crossref
|u Landau, E.M. & Rosenbusch, J.P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93, 14532–14535 (1996).
|t Proc. Natl. Acad. Sci. USA
|v 93
|y 1996
999 C 5 |a 10.1038/nprot.2009.31
|9 -- missing cx lookup --
|1 M Caffrey
|p 706 -
|2 Crossref
|u Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009).
|t Nat. Protoc.
|v 4
|y 2009
999 C 5 |a 10.1038/nature01109
|9 -- missing cx lookup --
|1 VI Gordeliy
|p 484 -
|2 Crossref
|u Gordeliy, V.I. et al. Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex. Nature 419, 484–487 (2002).
|t Nature
|v 419
|y 2002
999 C 5 |a 10.1146/annurev.physiol.66.032102.150049
|9 -- missing cx lookup --
|1 JK Lanyi
|p 665 -
|2 Crossref
|u Lanyi, J.K. Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665–688 (2004).
|t Annu. Rev. Physiol.
|v 66
|y 2004
999 C 5 |a 10.1016/j.bbabio.2013.09.010
|9 -- missing cx lookup --
|1 C Bamann
|p 614 -
|2 Crossref
|u Bamann, C., Bamberg, E., Wachtveitl, J. & Glaubitz, C. Proteorhodopsin. Biochim. Biophys. Acta 1837, 614–625 (2014).
|t Biochim. Biophys. Acta
|v 1837
|y 2014
999 C 5 |a 10.1126/science.288.5470.1390
|9 -- missing cx lookup --
|1 M Kolbe
|p 1390 -
|2 Crossref
|u Kolbe, M., Besir, H., Essen, L.-O. & Oesterhelt, D. Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288, 1390–1396 (2000).
|t Science
|v 288
|y 2000
999 C 5 |a 10.1016/j.jmb.2009.11.061
|9 -- missing cx lookup --
|1 T Kouyama
|p 564 -
|2 Crossref
|u Kouyama, T. et al. Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J. Mol. Biol. 396, 564–579 (2010).
|t J. Mol. Biol.
|v 396
|y 2010
999 C 5 |a 10.1006/jmbi.1999.3027
|9 -- missing cx lookup --
|1 H Luecke
|p 899 -
|2 Crossref
|u Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P. & Lanyi, J.K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911 (1999).
|t J. Mol. Biol.
|v 291
|y 1999
999 C 5 |a 10.1073/pnas.0807162105
|9 -- missing cx lookup --
|1 H Luecke
|p 16561 -
|2 Crossref
|u Luecke, H. et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA 105, 16561–16565 (2008).
|t Proc. Natl. Acad. Sci. USA
|v 105
|y 2008
999 C 5 |a 10.1073/pnas.1221629110
|9 -- missing cx lookup --
|1 I Gushchin
|p 12631 -
|2 Crossref
|u Gushchin, I. et al. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc. Natl. Acad. Sci. USA 110, 12631–12636 (2013).
|t Proc. Natl. Acad. Sci. USA
|v 110
|y 2013
999 C 5 |a 10.1021/jp807972e
|9 -- missing cx lookup --
|1 G Kuppuraj
|p 2952 -
|2 Crossref
|u Kuppuraj, G., Dudev, M. & Lim, C. Factors governing metal-ligand distances and coordination geometries of metal complexes. J. Phys. Chem. B 113, 2952–2960 (2009).
|t J. Phys. Chem. B
|v 113
|y 2009
999 C 5 |a 10.1021/bi501064n
|9 -- missing cx lookup --
|1 SP Balashov
|p 7549 -
|2 Crossref
|u Balashov, S.P. et al. Light-driven Na+ pump from Gillisia limnaea: a high-affinity Na+ binding site is formed transiently in the photocycle. Biochemistry 53, 7549–7561 (2014).
|t Biochemistry
|v 53
|y 2014
999 C 5 |a 10.1107/S0907444913017575
|9 -- missing cx lookup --
|1 T Ran
|p 1965 -
|2 Crossref
|u Ran, T. et al. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr. D Biol. Crystallogr. 69, 1965–1980 (2013).
|t Acta Crystallogr. D Biol. Crystallogr.
|v 69
|y 2013
999 C 5 |a 10.1016/j.jmb.2003.10.068
|9 -- missing cx lookup --
|1 T Kouyama
|p 531 -
|2 Crossref
|u Kouyama, T., Nishikawa, T., Tokuhisa, T. & Okumura, H. Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. J. Mol. Biol. 335, 531–546 (2004).
|t J. Mol. Biol.
|v 335
|y 2004
999 C 5 |a 10.1093/nar/gkr703
|9 -- missing cx lookup --
|1 MA Lomize
|p D370 -
|2 Crossref
|u Lomize, M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I. & Lomize, A.L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).
|t Nucleic Acids Res.
|v 40
|y 2012
999 C 5 |a 10.1186/1472-6807-8-49
|9 -- missing cx lookup --
|1 BK Ho
|p 49 -
|2 Crossref
|u Ho, B.K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).
|t BMC Struct. Biol.
|v 8
|y 2008
999 C 5 |a 10.1016/j.pep.2005.01.016
|9 -- missing cx lookup --
|1 FW Studier
|p 207 -
|2 Crossref
|u Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
|t Protein Expr. Purif.
|v 41
|y 2005
999 C 5 |a 10.1107/S0021889807044196
|9 -- missing cx lookup --
|1 A Royant
|p 1105 -
|2 Crossref
|u Royant, A. et al. Advances in spectroscopic methods for biological crystals. 1. Fluorescence lifetime measurements. J. Appl. Crystallogr. 40, 1105–1112 (2007).
|t J. Appl. Crystallogr.
|v 40
|y 2007
999 C 5 |a 10.1016/0005-2728(90)90163-X
|9 -- missing cx lookup --
|1 RR Birge
|p 293 -
|2 Crossref
|u Birge, R.R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim. Biophys. Acta 1016, 293–327 (1990).
|t Biochim. Biophys. Acta
|v 1016
|y 1990
999 C 5 |a 10.1016/0042-6989(78)90235-3
|9 -- missing cx lookup --
|1 DE Metzler
|p 1417 -
|2 Crossref
|u Metzler, D.E. & Harris, C.M. Shapes of spectral bands of visual pigments. Vision Res. 18, 1417–1420 (1978).
|t Vision Res.
|v 18
|y 1978
999 C 5 |a 10.1007/978-1-4020-6316-9_4
|9 -- missing cx lookup --
|2 Crossref
|u Leslie, A.G.W. & Powell, H.R. in Evolving Methods for Macromolecular Crystallography (eds. Read, R.J. & Sussman, J.L.) 41–51 (Springer Netherlands, 2007).
999 C 5 |a 10.1107/S0907444910045749
|9 -- missing cx lookup --
|1 MD Winn
|p 235 -
|2 Crossref
|u Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
|t Acta Crystallogr. D Biol. Crystallogr.
|v 67
|y 2011
999 C 5 |a 10.1107/S0907444909042589
|9 -- missing cx lookup --
|1 A Vagin
|p 22 -
|2 Crossref
|u Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).
|t Acta Crystallogr. D Biol. Crystallogr.
|v 66
|y 2010
999 C 5 |a 10.1093/nar/gkn750
|9 -- missing cx lookup --
|1 F Kiefer
|p D387 -
|2 Crossref
|u Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L. & Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 37, D387–D392 (2009).
|t Nucleic Acids Res.
|v 37
|y 2009
999 C 5 |a 10.1107/S0907444911001314
|9 -- missing cx lookup --
|1 GN Murshudov
|p 355 -
|2 Crossref
|u Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).
|t Acta Crystallogr. D Biol. Crystallogr.
|v 67
|y 2011
999 C 5 |a 10.1107/S0907444909052925
|9 -- missing cx lookup --
|1 PD Adams
|p 213 -
|2 Crossref
|u Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
|t Acta Crystallogr. D Biol. Crystallogr.
|v 66
|y 2010
999 C 5 |a 10.1107/S0907444904019158
|9 -- missing cx lookup --
|1 P Emsley
|p 2126 -
|2 Crossref
|u Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
|t Acta Crystallogr. D Biol. Crystallogr.
|v 60
|y 2004
999 C 5 |a 10.1007/BF02426663
|9 -- missing cx lookup --
|1 E Bamberg
|p 277 -
|2 Crossref
|u Bamberg, E. et al. Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Biophys. Struct. Mech. 5, 277–292 (1979).
|t Biophys. Struct. Mech.
|v 5
|y 1979


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21