001 | 202160 | ||
005 | 20240610115650.0 | ||
024 | 7 | _ | |a 10.1038/nsmb.3002 |2 doi |
024 | 7 | _ | |a WOS:000354094700012 |2 WOS |
024 | 7 | _ | |a altmetric:3892732 |2 altmetric |
024 | 7 | _ | |a pmid:25849142 |2 pmid |
037 | _ | _ | |a FZJ-2015-04449 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Gushchin, Ivan |0 P:(DE-Juel1)165798 |b 0 |
245 | _ | _ | |a Crystal structure of a light-driven sodium pump |
260 | _ | _ | |a New York, NY |c 2015 |b Nature America |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1453974944_29962 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a Recently, the first known light-driven sodium pumps, from the microbial rhodopsin family, were discovered. We have solved the structure of one of them, Krokinobacter eikastus rhodopsin 2 (KR2), in the monomeric blue state and in two pentameric red states, at resolutions of 1.45 Å and 2.2 and 2.8 Å, respectively. The structures reveal the ion-translocation pathway and show that the sodium ion is bound outside the protein at the oligomerization interface, that the ion-release cavity is capped by a unique N-terminal α-helix and that the ion-uptake cavity is unexpectedly large and open to the surface. Obstruction of the cavity with the mutation G263F imparts KR2 with the ability to pump potassium. These results pave the way for the understanding and rational design of cation pumps with new specific properties valuable for optogenetics. |
536 | _ | _ | |a 552 - Engineering Cell Function (POF3-552) |0 G:(DE-HGF)POF3-552 |c POF3-552 |f POF III |x 0 |
542 | _ | _ | |i 2015-04-06 |2 Crossref |u http://www.springer.com/tdm |
700 | 1 | _ | |a Shevchenko, Vitaly |0 P:(DE-Juel1)143908 |b 1 |
700 | 1 | _ | |a Polovinkin, V. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kovalev, Kirill |0 P:(DE-Juel1)165629 |b 3 |
700 | 1 | _ | |a Alekseev, Alexey |0 P:(DE-Juel1)165628 |b 4 |
700 | 1 | _ | |a Round, E. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Borshchevskiy, Valentin |0 P:(DE-Juel1)144613 |b 6 |
700 | 1 | _ | |a Balandin, Taras |0 P:(DE-Juel1)131949 |b 7 |
700 | 1 | _ | |a Popov, A. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Gensch, Thomas |0 P:(DE-Juel1)131924 |b 9 |
700 | 1 | _ | |a Fahlke, Christoph |0 P:(DE-Juel1)136837 |b 10 |
700 | 1 | _ | |a Bamann, C. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Willbold, Dieter |0 P:(DE-Juel1)132029 |b 12 |
700 | 1 | _ | |a Büldt, Georg |0 P:(DE-Juel1)131957 |b 13 |
700 | 1 | _ | |a Bamberg, E. |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Gordeliy, Valentin |0 P:(DE-Juel1)131964 |b 15 |e Corresponding Author |
773 | 1 | 8 | |a 10.1038/nsmb.3002 |b Springer Science and Business Media LLC |d 2015-04-06 |n 5 |p 390-395 |3 journal-article |2 Crossref |t Nature Structural & Molecular Biology |v 22 |y 2015 |x 1545-9993 |
773 | _ | _ | |a 10.1038/nsmb.3002 |0 PERI:(DE-600)2131437-8 |n 5 |p 390-395 |t Nature structural & molecular biology |v 22 |y 2015 |x 1545-9993 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/202160/files/nsmb.3002.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:202160 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165798 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)143908 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165629 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)165628 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131949 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131924 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)136837 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)132029 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)131957 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)131964 |
913 | 0 | _ | |a DE-HGF |b Schlüsseltechnologien |l BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung |1 G:(DE-HGF)POF2-450 |0 G:(DE-HGF)POF2-452 |2 G:(DE-HGF)POF2-400 |v Structural Biology |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-552 |2 G:(DE-HGF)POF3-500 |v Engineering Cell Function |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-5-20110106 |k ICS-5 |l Molekulare Biophysik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-4-20110106 |k ICS-4 |l Zelluläre Biophysik |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-5-20110106 |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
980 | _ | _ | |a I:(DE-Juel1)ICS-4-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-6-20200312 |
981 | _ | _ | |a I:(DE-Juel1)ER-C-3-20170113 |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IBI-1-20200312 |
981 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
981 | _ | _ | |a I:(DE-Juel1)ICS-4-20110106 |
999 | C | 5 | |2 Crossref |u Alberts, B. et al. Molecular Biology of the Cell (Garland Science, 2002). |
999 | C | 5 | |a 10.1038/newbio233149a0 |9 -- missing cx lookup -- |1 D Oesterhelt |p 149 - |2 Crossref |u Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233, 149–152 (1971). |t Nat. New Biol. |v 233 |y 1971 |
999 | C | 5 | |a 10.1016/S0021-9258(18)34020-1 |9 -- missing cx lookup -- |1 B Schobert |p 10306 - |2 Crossref |u Schobert, B. & Lanyi, J.K. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257, 10306–10313 (1982). |t J. Biol. Chem. |v 257 |y 1982 |
999 | C | 5 | |a 10.1021/cr4003769 |9 -- missing cx lookup -- |1 OP Ernst |p 126 - |2 Crossref |u Ernst, O.P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014). |t Chem. Rev. |v 114 |y 2014 |
999 | C | 5 | |a 10.1016/j.bbabio.2013.08.006 |9 -- missing cx lookup -- |1 M Grote |p 533 - |2 Crossref |u Grote, M., Engelhard, M. & Hegemann, P. Of ion pumps, sensors and channels: perspectives on microbial rhodopsins between science and history. Biochim. Biophys. Acta 1837, 533–545 (2014). |t Biochim. Biophys. Acta |v 1837 |y 2014 |
999 | C | 5 | |a 10.1093/gbe/evs134 |9 -- missing cx lookup -- |1 S-K Kwon |p 187 - |2 Crossref |u Kwon, S.-K. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol. Evol. 5, 187–199 (2013). |t Genome Biol. Evol. |v 5 |y 2013 |
999 | C | 5 | |a 10.1038/ncomms2689 |9 -- missing cx lookup -- |1 K Inoue |p 1678 - |2 Crossref |u Inoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013). |t Nat. Commun. |v 4 |y 2013 |
999 | C | 5 | |a 10.1073/pnas.93.25.14532 |9 -- missing cx lookup -- |1 EM Landau |p 14532 - |2 Crossref |u Landau, E.M. & Rosenbusch, J.P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93, 14532–14535 (1996). |t Proc. Natl. Acad. Sci. USA |v 93 |y 1996 |
999 | C | 5 | |a 10.1038/nprot.2009.31 |9 -- missing cx lookup -- |1 M Caffrey |p 706 - |2 Crossref |u Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009). |t Nat. Protoc. |v 4 |y 2009 |
999 | C | 5 | |a 10.1038/nature01109 |9 -- missing cx lookup -- |1 VI Gordeliy |p 484 - |2 Crossref |u Gordeliy, V.I. et al. Molecular basis of transmembrane signalling by sensory rhodopsin II–transducer complex. Nature 419, 484–487 (2002). |t Nature |v 419 |y 2002 |
999 | C | 5 | |a 10.1146/annurev.physiol.66.032102.150049 |9 -- missing cx lookup -- |1 JK Lanyi |p 665 - |2 Crossref |u Lanyi, J.K. Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665–688 (2004). |t Annu. Rev. Physiol. |v 66 |y 2004 |
999 | C | 5 | |a 10.1016/j.bbabio.2013.09.010 |9 -- missing cx lookup -- |1 C Bamann |p 614 - |2 Crossref |u Bamann, C., Bamberg, E., Wachtveitl, J. & Glaubitz, C. Proteorhodopsin. Biochim. Biophys. Acta 1837, 614–625 (2014). |t Biochim. Biophys. Acta |v 1837 |y 2014 |
999 | C | 5 | |a 10.1126/science.288.5470.1390 |9 -- missing cx lookup -- |1 M Kolbe |p 1390 - |2 Crossref |u Kolbe, M., Besir, H., Essen, L.-O. & Oesterhelt, D. Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288, 1390–1396 (2000). |t Science |v 288 |y 2000 |
999 | C | 5 | |a 10.1016/j.jmb.2009.11.061 |9 -- missing cx lookup -- |1 T Kouyama |p 564 - |2 Crossref |u Kouyama, T. et al. Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J. Mol. Biol. 396, 564–579 (2010). |t J. Mol. Biol. |v 396 |y 2010 |
999 | C | 5 | |a 10.1006/jmbi.1999.3027 |9 -- missing cx lookup -- |1 H Luecke |p 899 - |2 Crossref |u Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J.-P. & Lanyi, J.K. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911 (1999). |t J. Mol. Biol. |v 291 |y 1999 |
999 | C | 5 | |a 10.1073/pnas.0807162105 |9 -- missing cx lookup -- |1 H Luecke |p 16561 - |2 Crossref |u Luecke, H. et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA 105, 16561–16565 (2008). |t Proc. Natl. Acad. Sci. USA |v 105 |y 2008 |
999 | C | 5 | |a 10.1073/pnas.1221629110 |9 -- missing cx lookup -- |1 I Gushchin |p 12631 - |2 Crossref |u Gushchin, I. et al. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc. Natl. Acad. Sci. USA 110, 12631–12636 (2013). |t Proc. Natl. Acad. Sci. USA |v 110 |y 2013 |
999 | C | 5 | |a 10.1021/jp807972e |9 -- missing cx lookup -- |1 G Kuppuraj |p 2952 - |2 Crossref |u Kuppuraj, G., Dudev, M. & Lim, C. Factors governing metal-ligand distances and coordination geometries of metal complexes. J. Phys. Chem. B 113, 2952–2960 (2009). |t J. Phys. Chem. B |v 113 |y 2009 |
999 | C | 5 | |a 10.1021/bi501064n |9 -- missing cx lookup -- |1 SP Balashov |p 7549 - |2 Crossref |u Balashov, S.P. et al. Light-driven Na+ pump from Gillisia limnaea: a high-affinity Na+ binding site is formed transiently in the photocycle. Biochemistry 53, 7549–7561 (2014). |t Biochemistry |v 53 |y 2014 |
999 | C | 5 | |a 10.1107/S0907444913017575 |9 -- missing cx lookup -- |1 T Ran |p 1965 - |2 Crossref |u Ran, T. et al. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr. D Biol. Crystallogr. 69, 1965–1980 (2013). |t Acta Crystallogr. D Biol. Crystallogr. |v 69 |y 2013 |
999 | C | 5 | |a 10.1016/j.jmb.2003.10.068 |9 -- missing cx lookup -- |1 T Kouyama |p 531 - |2 Crossref |u Kouyama, T., Nishikawa, T., Tokuhisa, T. & Okumura, H. Crystal structure of the L intermediate of bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pumping cycle. J. Mol. Biol. 335, 531–546 (2004). |t J. Mol. Biol. |v 335 |y 2004 |
999 | C | 5 | |a 10.1093/nar/gkr703 |9 -- missing cx lookup -- |1 MA Lomize |p D370 - |2 Crossref |u Lomize, M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I. & Lomize, A.L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012). |t Nucleic Acids Res. |v 40 |y 2012 |
999 | C | 5 | |a 10.1186/1472-6807-8-49 |9 -- missing cx lookup -- |1 BK Ho |p 49 - |2 Crossref |u Ho, B.K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008). |t BMC Struct. Biol. |v 8 |y 2008 |
999 | C | 5 | |a 10.1016/j.pep.2005.01.016 |9 -- missing cx lookup -- |1 FW Studier |p 207 - |2 Crossref |u Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005). |t Protein Expr. Purif. |v 41 |y 2005 |
999 | C | 5 | |a 10.1107/S0021889807044196 |9 -- missing cx lookup -- |1 A Royant |p 1105 - |2 Crossref |u Royant, A. et al. Advances in spectroscopic methods for biological crystals. 1. Fluorescence lifetime measurements. J. Appl. Crystallogr. 40, 1105–1112 (2007). |t J. Appl. Crystallogr. |v 40 |y 2007 |
999 | C | 5 | |a 10.1016/0005-2728(90)90163-X |9 -- missing cx lookup -- |1 RR Birge |p 293 - |2 Crossref |u Birge, R.R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim. Biophys. Acta 1016, 293–327 (1990). |t Biochim. Biophys. Acta |v 1016 |y 1990 |
999 | C | 5 | |a 10.1016/0042-6989(78)90235-3 |9 -- missing cx lookup -- |1 DE Metzler |p 1417 - |2 Crossref |u Metzler, D.E. & Harris, C.M. Shapes of spectral bands of visual pigments. Vision Res. 18, 1417–1420 (1978). |t Vision Res. |v 18 |y 1978 |
999 | C | 5 | |a 10.1007/978-1-4020-6316-9_4 |9 -- missing cx lookup -- |2 Crossref |u Leslie, A.G.W. & Powell, H.R. in Evolving Methods for Macromolecular Crystallography (eds. Read, R.J. & Sussman, J.L.) 41–51 (Springer Netherlands, 2007). |
999 | C | 5 | |a 10.1107/S0907444910045749 |9 -- missing cx lookup -- |1 MD Winn |p 235 - |2 Crossref |u Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011). |t Acta Crystallogr. D Biol. Crystallogr. |v 67 |y 2011 |
999 | C | 5 | |a 10.1107/S0907444909042589 |9 -- missing cx lookup -- |1 A Vagin |p 22 - |2 Crossref |u Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010). |t Acta Crystallogr. D Biol. Crystallogr. |v 66 |y 2010 |
999 | C | 5 | |a 10.1093/nar/gkn750 |9 -- missing cx lookup -- |1 F Kiefer |p D387 - |2 Crossref |u Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L. & Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 37, D387–D392 (2009). |t Nucleic Acids Res. |v 37 |y 2009 |
999 | C | 5 | |a 10.1107/S0907444911001314 |9 -- missing cx lookup -- |1 GN Murshudov |p 355 - |2 Crossref |u Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011). |t Acta Crystallogr. D Biol. Crystallogr. |v 67 |y 2011 |
999 | C | 5 | |a 10.1107/S0907444909052925 |9 -- missing cx lookup -- |1 PD Adams |p 213 - |2 Crossref |u Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). |t Acta Crystallogr. D Biol. Crystallogr. |v 66 |y 2010 |
999 | C | 5 | |a 10.1107/S0907444904019158 |9 -- missing cx lookup -- |1 P Emsley |p 2126 - |2 Crossref |u Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). |t Acta Crystallogr. D Biol. Crystallogr. |v 60 |y 2004 |
999 | C | 5 | |a 10.1007/BF02426663 |9 -- missing cx lookup -- |1 E Bamberg |p 277 - |2 Crossref |u Bamberg, E. et al. Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Biophys. Struct. Mech. 5, 277–292 (1979). |t Biophys. Struct. Mech. |v 5 |y 1979 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|