000202185 001__ 202185
000202185 005__ 20210129220049.0
000202185 0247_ $$2doi$$a10.1016/j.bpj.2012.11.3291
000202185 0247_ $$2ISSN$$a0006-3495
000202185 0247_ $$2ISSN$$a1542-0086
000202185 0247_ $$2WOS$$aWOS:000316074305536
000202185 037__ $$aFZJ-2015-04474
000202185 082__ $$a570
000202185 1001_ $$0P:(DE-Juel1)140589$$aPoojari, Chetan$$b0$$eCorresponding Author
000202185 245__ $$aAggregation of Amyloids at Biomembranes and its Implications in Alzheimers's Disease and Type II Diabetes
000202185 260__ $$aNew York, NY$$bRockefeller Univ. Press$$c2013
000202185 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435738028_3520
000202185 3367_ $$2DataCite$$aOutput Types/Journal article
000202185 3367_ $$00$$2EndNote$$aJournal Article
000202185 3367_ $$2BibTeX$$aARTICLE
000202185 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202185 3367_ $$2DRIVER$$aarticle
000202185 520__ $$aThe aggregation of the amyloid-β peptide (Aβ) into neurotoxic oligomers on the neuronal membrane surface and its insertion into the membrane is considered to be a crucial event in the development of Alzheimer's disease (AD). However, the mechanism of insertion, pore formation and membrane disruption still needs to be uncovered. We used atomistic molecular dynamics (MD) simulations to investigate the behavior of Aβ in zwitterionic and anionic lipid bilayers. We studied the effect of Aβ secondary structure, oligomerization and mutation on its transmembrane stability and membrane maintenance. Our main finding is that β sheet-oligomerization is required for Aβto be stable in the membrane and to induce membrane permeabilization.Aggregation of human islet amyloid polypeptide (hIAPP) at beta-cell membranes is associated with the onset of type II diabetes. It is proposed that hIAPP aggregates induce cytotoxicity to the pancreatic islets of langerhans cells by membrane disruption. Chiral surface-specific vibrational sum frequency generation (SFG) spectroscopy in conjunction with ab initio simulations revealed a tilted orientation of hIAPP β sheet-aggregates at lipid/aqueous interfaces. We used this orientation for the starting structure of a hIAPP trimer inserted into a lipid bilayer and followed its effects on membrane maintenance using MD simulations. We observe β barrel-formation, which allows massive water and even ion flow across the membrane.
000202185 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000202185 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202185 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2012.11.3291$$gVol. 104, no. 2, p. 592a -$$n2$$p592a -$$tBiophysical journal$$v104$$x0006-3495$$y2013
000202185 8564_ $$uhttps://juser.fz-juelich.de/record/202185/files/1-s2.0-S0006349512045377-main.pdf$$yRestricted
000202185 8564_ $$uhttps://juser.fz-juelich.de/record/202185/files/1-s2.0-S0006349512045377-main.gif?subformat=icon$$xicon$$yRestricted
000202185 8564_ $$uhttps://juser.fz-juelich.de/record/202185/files/1-s2.0-S0006349512045377-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202185 8564_ $$uhttps://juser.fz-juelich.de/record/202185/files/1-s2.0-S0006349512045377-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202185 8564_ $$uhttps://juser.fz-juelich.de/record/202185/files/1-s2.0-S0006349512045377-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202185 8564_ $$uhttps://juser.fz-juelich.de/record/202185/files/1-s2.0-S0006349512045377-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202185 909CO $$ooai:juser.fz-juelich.de:202185$$pVDB
000202185 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140589$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000202185 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000202185 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000202185 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202185 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202185 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202185 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202185 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202185 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202185 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000202185 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000202185 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000202185 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000202185 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000202185 920__ $$lyes
000202185 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000202185 980__ $$ajournal
000202185 980__ $$aVDB
000202185 980__ $$aI:(DE-Juel1)ICS-6-20110106
000202185 980__ $$aUNRESTRICTED
000202185 981__ $$aI:(DE-Juel1)IBI-7-20200312