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Abstract. This paper presents the development and imple-

mentation of a spatio-temporal variational data assimilation

system (4D-var) for the soil–vegetation–atmosphere transfer

model “Community Land Model” (CLM3.5), along with the

development of the adjoint code for the core soil–atmosphere

transfer scheme of energy and soil moisture. The purpose of

this work is to obtain an improved estimation technique for

the energy fluxes (sensible and latent heat fluxes) between

the soil and the atmosphere. Optimal assessments of these

fluxes are neither available from model simulations nor mea-

surements alone, while a 4D-var data assimilation has the

potential to combine both information sources by a Best Lin-

ear Unbiased Estimate (BLUE). The 4D-var method requires

the development of the adjoint model of the CLM which is

established in this work. The new data assimilation algorithm

is able to assimilate soil temperature and soil moisture mea-

surements for one-dimensional columns of the model grid.

Numerical experiments were first used to test the algorithm

under idealised conditions. It was found that the analysis de-

livers improved results whenever there is a dependence be-

tween the initial values and the assimilated quantity. Further-

more, soil temperature and soil moisture from in situ field

measurements were assimilated. These calculations demon-

strate the improved performance of flux estimates, whenever

soil property parameters are available of sufficient quality.

Misspecifications could also be identified by the performance

of the variational scheme.

1 Introduction

Interaction processes between the atmosphere and the solid

earth surface are a case in which the large range of all

timescales involved, from hours to centuries, are of impor-

tance. The quality of both short-term meteorological fore-

casts and centennial runs with climate models strongly de-

pend on the models’ ability to correctly simulate sensible

and latent heat fluxes. However, skillful assessments of these

fluxes over regional or global domains, or as integral quanti-

ties heat and moisture budgets, are neither amenable by mere

model simulations nor measurements. All models are imper-

fect, and in prognostic mode errors at grid points are known

in statistical terms at best, rather than exactly. Model simula-

tions by soil–vegetation–atmosphere transfer (SVAT) models

are set up to provide flux results on regular grids. The quality

of simulations depends on moisture initial values, tempera-

ture initial values in soil and atmosphere, as well as insolation

and atmospheric turbulence which are controlled by cloud

and surface parameters, including soil–vegetation properties.

Misspecification of one of these quantities will result in bi-

ased flux simulations. Observations are also error affected,

with only statistical information available. In situ measure-

ments are typically sparse for soil, especially for deeper soil

layers, while space borne sensor footprints are coarse, valid

for skin layers only, and with long revisit times. There are

also no flux measurements available which cover large areas.

Eddy covariance devices are sparse.

Rather, a combination of both information sources, mod-

els and observations, has the potential to optimally esti-

mate fluxes, which are not directly observable. In any case,
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advanced data assimilation can be considered a key tech-

nique to achieve best estimates of heat and moisture fluxes

(Houser et al., 2010). On the other hand, if there are system-

atic discrepancies between model and data this clearly indi-

cates deficiencies from at least one of these components. In

this case, the identification can only be based on independent

data of sufficient quality (Talagrand, 2010).

In meteorological applications, data assimilation is fo-

cused on estimating optimal initial values, tacitly assuming

that available observations shall serve to analyse the physi-

cal state of the atmosphere as the most important parameter

set for the best forecast. In contrast, from a meteorological

viewpoint, soil data assimilation serves to provide optimal

flux values of energy and moisture fluxes as a lower bound-

ary condition of the forecast model.

Soil measurements are typically sparse. This is an in-

centive to apply advanced spatio-temporal data assimilation

techniques, which generally have the highest potential to ex-

ploit limited data sets (Evensen, 2007). Most prominently,

these include Kalman filtering and the four-dimensional vari-

ational (4D-var) data assimilation scheme. In typical soil data

assimilation studies, the objective is to produce an improved,

continuous land surface state estimate in space and time,

from which fluxes between soil and atmosphere can be in-

ferred as a secondary product. Yet fluxes are not typically

expressed as prognostic but diagnostic parameters in models.

An introduction to different data assimilation methods

of SVAT models can be found in Reichle (2008). The ap-

plication of Kalman filters in soil data assimilation ap-

pears prominently in tandem with remote sensing data as-

similation. First, Milly and Kabala (1986) presented an in-

tegration of models and remote sensing temperature data

using an extended Kalman filter (EKF). Notably, numer-

ically simulated vertical and horizontal polarised passive

microwave and thermal infrared observations were assimi-

lated by Entekhabi et al. (1994) into a one-dimensional soil

moisture and temperature diffusion model by Kalman fil-

tering. Soil moisture profile estimates were provided by

Walker et al. (2001), assimilating near-surface parameters by

Kalman filtering. A wealth of further Kalman filter studies

has since been published, demonstrating the popularity of

Kalman filtering in SVAT modelling.

In contrast to soil data assimilation, Kalman filtering has

gained less attention in the operational meteorological fore-

cast system. Rather, the 4D-var method is considered as

the most advanced of practicable technique. This was of-

ten the motivation to complement the meteorological part

in assimilation systems by the same variational method

for the soil and SVAT section. Earlier examples of adjoint

SVAT models, sometimes simplified versions, include those

of Marais and Musson-Genon (1992), Callies et al. (1998),

Rhodin et al. (1999) and Margulis and Entekhabi (2001).

As a typical meteorological objective, Mahfouf (1991) and

Bouyssel et al. (1999) applied the ISBA model and its ad-

joint, assessing the potential of standardised 2m temperature

observations to improve soil humidity simulations. In the for-

mer study, weather situations with strong direct radiative im-

pact were selected, where a tight coupling between atmo-

sphere and soil prevails. Under these conditions, meteoro-

logical data proved to be especially useful to improve soil

analyses. Hess et al. (2008) report a similar observational

condition, and additionally used precipitation data, demon-

strating improvements in forecasting 2m temperatures and

atmospheric low-level humidity. As a large step forward to

satellite data assimilation, Reichle et al. (2001) introduced

remotely sensed brightness temperature for assimilation with

a radiative transfer model. In very recent years, an enhanced

number of studies on energy and moisture fluxes, apply-

ing advanced data assimilation techniques, were published.

These include the work of Bateni and Entekhabi (2012),

who implemented an ensemble Kalman smoother. The au-

thors demonstrated that this algorithm is an efficient and

flexible data assimilation procedure that is able to extract

useful information on the partitioning of available surface

energy from land surface temperature measurements. Al-

though the study was not based, but results were compared

to a dynamic variational model, the technique eventually

provides reliable estimates of turbulent heat fluxes. Tradi-

tional approaches consider soil and vegetation as a combined

source, not accounting for the difference between soil and

canopy temperatures and turbulent exchange rates. In con-

trast, Bateni and Liang (2012) consider the markedly dif-

ferent behaviour and analyse the contribution of soil and

canopy to the turbulent heat fluxes separately. Soil param-

eter and flux estimates by remote sensing data assimila-

tion is another area of recent progress, mostly based on mi-

crowave sensors. Hain et al. (2012) examine the assimilation

of a thermal infrared product based on surface evaporative

flux estimates from the Atmosphere Land Exchange Inverse

(ALEXI) model and the MW-based VU Amsterdam NASA

surface soil moisture product generated with the Land Pa-

rameter Retrieval Model (LPRM).

The general objective of this study is to evaluate the es-

timation of fluxes of energy and moisture between soil and

atmosphere with a state-of-the-art SVAT model, based on

soil temperature and humidity measurements. Given the 4D-

var potential, to provide physically consistent flux process

simulations within an assimilation interval, without disturb-

ing intermediate corrections at instances of available data,

this method is adopted here. As the underlying model, the

Community Land Model (CLM) version 3.5 is adopted (Ole-

son et al., 2008). This model simulates complex interactions

between soil, vegetation and atmosphere in terms of energy

and humidity, and optionally also the carbon–nitrogen cycle.

A specific objective of this study is to develop the adjoint

and evaluate the potential of 4D-var for flux estimates with

this sophisticated and widely used SVAT model, and make it

available.

Sect. 2 briefly describes the theoretical basis of time-

variational data assimilation. Section 3 introduces the
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Community Land Model and the development of its adjoint,

while Sect. 4 provides a succinct discussion on model pa-

rameter impact. Results are presented in Sect. 5, and Sect. 6

contains the conclusions.

2 Theory of 4D-var data assimilation

This section gives a short description of the 4D-var method,

as applied in the study. More comprehensive expositions in

the context of general data assimilation may be found in, for

example, Talagrand (1997) and Bouttier and Courtier (1999).

A general overview of data assimilation in all earth compart-

ments can be found in Lahoz et al. (2010).

Data assimilation seeks to combine the following informa-

tion sources, to provide a best estimate of states or processes:

1. a priori or background knowledge, provided by fore-

casts or climatological information sources,

2. measurements of geophysical states or parameters, and

3. knowledge of governing process dynamics, as intro-

duced to the model code.

Advanced data assimilation methods include the solution of

partial differential equations, as for example in this study,

the parabolic equations of moisture and heat fluxes. Placing

emphasis on the 4D-var method, this technique is briefly de-

scribed as follows. In order to obtain a phase space trajectory

of the model for the assimilation interval, which accounts for

continuous and consistent model dynamics and related heat

and soil moisture fluxes and their budgets, the adjoint model

version is developed and set in a 4D-var context. However,

the expenditure for the coding in this method is high.

Let x be the control vector containing the variables to

be optimised, which may be model initial conditions, model

parameters, or both. The optimal state estimate, commonly

termed as analysis xa, is found by the minimisation of

a quadratic cost function J :

J (x0) = J b+ J o =
1

2
[x0− xb]TB−1[x0− xb] (1)

+
1

2

N∑

i=0

[Hi(Mi(x0)) − yi]
TR−1

i [Hi(Mi(x0)) − yi],

with background costs J b and observational costs J o.

Matrix B is the background error covariance matrix, con-

taining the estimated errors of background knowledge and its

covariances. In this study, B includes the vertical correlation,

while cross-covariances between temperature and humidity

are not taken into account. With these two parameters and

10 soil layers, B is a symmetric 20× 20 two-block diago-

nal matrix, which can be factorised into a 6 diagonal ma-

trix of standard deviations and a correlation matrix C to read

B= 6C6. We assume that the vertical correlation increases

with depth, following the same reasoning which designs the

vertical grid spacing to increase with depth. Therefore, we

argue that the variable layer thickness can be taken as units.

Adopting a Gaussian covariance model for the correlation,

dependent on distance in terms of model layer units, elements

of C then read

Cij = exp

(

−
1

2

(i − j)2

l2

)

. (2)

Here i and j are the soil layer indices, and l is the corre-

lation length in terms of layers. In our case we found best

results with l = 2.

Observational cost J o measures the differences of model

values and observations over the entire assimilation interval.

To compare observations yi of time step i with the corre-

sponding model prediction Mi(x0), the model state must be

projected onto the observation space by the observation oper-

ator Hi , which is linearised, if applicable. Matrix Ri denotes

the observation error covariance. To minimise the cost func-

tion J , the gradient with respect to the initial state x0 is cal-

culated by adjoint calculus, prior to the minimisation step,

which is typically provided by quasi-Newton techniques,

for example by the L-BFGS (limited memory Broyden–

Fletcher–Goldfarb–Shanno) algorithm (Liu and Nocedal,

1989). The gradient ∇x0J of total costs J is

∇x0J =

∇x0
J b

︷ ︸︸ ︷

B−1[x0− xb]

+

∇x0
J o

︷ ︸︸ ︷

N∑

i=0

M∗
iH
T
i R

−1
i [Hi(Mi(x0)) − yi] , (3)

where M∗
i is the adjoint model and H

T
i denotes the trans-

posed linear observation operator.

For the calculation of the gradient at initial time of the

assimilation window, ∇x0J , the adjoint model is required,

sometimes also quoted as backward model. It is the develop-

ment of this adjoint model which renders the 4D-var method

work and maintenance intense.

This study applies the 4D-var method for individual soil

columns and time. Strictly speaking, this results in a 2-D-var

approach. As this term is typically reserved for spatial data

assimilation, the term 4D-var is used in what follows.

The adjoint model can be understood as follows: Variation

δJ o of observational costs by variation of the state δxi during

the ith time step is linearly approximated by

δJ o ≈ 〈∇xi
J,δxi〉 , (4)

with 〈 · , · 〉 denoting the scalar product, and Eq. (4) the

tangent-linear equation, valid if δx is sufficiently small.

Let Mi be the model operator, which projects the model

state from time 0 to time i, here CLM, xi = Mi(x0). Then an

initial perturbation δx0 evolves to time i by δxi ≈M′
i δx0 .
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Introducing this to Eq. (4), we find

δJ o ≈
〈

∇xi
J,M′

iδx0
〉

=
〈

M′T
i ∇xi

J,δx0
〉

. (5)

One obtains

∇x0J =
∑

i

M′T
i ∇xi

J =
∑

i

M∗
i ∇xi

J . (6)

Hence, by ∇xi
J o =H′T

i R
−1
i [Hi(xi)−yi] and adjoint model

M∗
i :=M′T

i , the sought-after gradient ∇x0J of the cost func-

tion with respect of the initial values is available.

Complex models such as the CLM are composed of long

routines of several hundred lines of code. The develop-

ment of the adjoint is facilitated by adjoint compilers (see

Sect. 3.2).

3 Model description

3.1 Community Land Model

The CLM (Bonan et al., 2002b; Oleson et al., 2008) is a land

surface model originally developed for coupling with the

Community Earth System Model (CESM) and the Commu-

nity Atmosphere Model (CAM). Model components of the

CLM include biogeophysics, the hydrological cycle, biogeo-

chemistry and dynamic vegetation, but the latter two are not

part of this study. The underlying fundamental equations for

soil temperature T and soil humidity 2 are

c
∂T

∂t
=

∂

∂z

(

λ
∂T

∂z

)

(7)

and

∂2

∂t
= −

∂

∂z

[

k

(
∂2

∂z

∂9

∂2

)

− 1

]

+ S(z), (8)

respectively. Here, c denotes soil heat capacity, λ thermal

conductivity, z soil depth and k hydraulic conductivity. The

soil water or capillary potential is 9, while S gives the local

net effect of sources and sinks.

The land surface representation distinguishes between five

primary land cover types (glacier, lake, wetland, urban and

vegetated) in each grid cell. The vegetated area of a grid cell

is described by plant functional types (PFTs), which are char-

acterised by their typical leaf and stem area index and canopy

height and a number of other physiological parameters. Each

subgrid land cover type and PFT patch presents at least one

separate column for energy and water calculations (Bonan

et al., 2002a).

CLM features the hydrological cycle over land by inter-

ception of water by plant foliage and wood, throughfall and

stemflow, infiltration, runoff, soil water and snow. These pro-

cesses are directly linked to temperature, precipitation and

runoff, and affects the biogeophysics module as well.

Table 1. Soil layers in the CLM.

Number of Depth Thickness

layer (cm) (cm)

1 0.7 1.8

2 2.8 2.8

3 6.2 4.5

4 12 7.7

5 21 12

6 37 20

7 62 34

8 104 55

9 172 91

10 286 113

In this study, CLM version 3.5 is used. The most important

difference to the previous version (CLM3.0) addresses the

representation of the hydrological cycle. Alterations include

an improved canopy integration scheme (Thornton and Zim-

mermann, 2007), a new frozen soil scheme (Niu and Yang,

2006), a basic groundwater model for identifying the water

table depth (Niu et al., 2007), a set of features as a novel sur-

face data sets derived Moderate Resolution Imaging Spectro-

radiometer (MODIS) products (Lawrence and Chase, 2007),

scaling of canopy interception (Lawrence et al., 2007) and

a simple TOPMODEL-based model for surface and sub-

surface runoff (Niu et al., 2005).

The CLM comprises 10 soil layers which are thin close

to the surface and thicker with increasing soil depth (see Ta-

ble 1). The concept of this soil layer definition is presented

by Lawrence et al. (2008).

3.2 Adjoint compiler TAPENADE

The tangent-linear and adjoint code of CLMwere created us-

ing the adjoint compiler TAPENADE (Hascoët and Pascual,

2004). The latter is designed to create tangent-linear or ad-

joint code automatically from given FORTRAN code. How-

ever, there are some structures that cannot be differentiated

by TAPENADE. In these cases, the original code has to be

modified to be compatible with the adjoint compiler. Exam-

ples of incompatible FORTRAN structures are pointers and

allocatable arrays. In CLM, all global variables are stored in

pointer structures. Consequently, all pointers have to be con-

verted to subroutine arguments before using TAPENADE.

Since the adjoint code should be as compact as possible,

there are several levels of shortening the differentiated code.

In this case, certain variables are not buffered or even used

in the adjoint code. This is possible for variables that are not

adjoint variables and have no impact on other adjoint vari-

ables.
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3.2.1 Validation of the adjoint code

The correctness of the adjoint code is decisive for achieving

proper analyses. The occurrence of errors cannot be excluded

during the automatic differentiation procedure. Therefore,

the automatically differentiated code must be tested in any

case.

To verify the adjoint code, the derivatives of the cost func-

tion with respect to the initial state can be calculated using

different methods. Here, the gradient ∇x0J with respect to

the initial states as calculated by the adjoint model has been

tested by finite differences and by tangent-linear model inte-

gration.

Using the finite differences method, the gradient ∇x0J for

small 1x0k can be approximated as

∂J

∂x0k
≈

J (x01,x02, . . . ,x0k + 1x0k, . . . ,x0n)

1x0k

−
J (x01,x02, . . . ,x0k, . . . ,x0n)

1x0k
.

(9)

In Eq. (9), J has to be continuously differentiable at x0.

Here, x0k is one component of the vector of the initial state

x0. Equation (9) shows that, for each variable, one additional

run of the forward model is required to calculate the gradient.

However, this method does not deliver an exact result. The

quality of the result depends on the choice of 1x0k .

The second possibility for calculating ∇x0J requires the

tangent-linear model M′. The derivative ∂J
∂x0k
can be calcu-

lated using the chain rule:

∂J

∂x0k
=

∂J

∂xi

∂Mi

∂x0k
=

∂J

∂xi

(M′·ek)i . (10)

Here, ek is the kth unit vector. Like in the first method, one

model run has to be performed per entry in x0.

The adjoint modelM∗ is the third possibility to obtain the

gradient. All components of the gradient can be calculated in

one single run of the adjoint model by Eq. (6).

The advantage of the tangent-linear method is that the

equivalence of the adjoint and tangent-linear methods can

be validated exactly. On the other hand, there is still the

problem that the automatic differentiation tool may engen-

der the same error for both calculations. In our case, we used

TAPENADE as adjoint and tangent-linear compiler. We also

applied the finite difference method for validation. Apply-

ing both the finite difference method and the tangent-linear

method, it could be verified that our adjoint code develop-

ment of the core of CLM is correct. In more detail, it came

out that there is less difference than 1 per mill between the

exact tangent linear and the difference method if the choice

of δx is appropriate. In the case of the CLM plant respira-

tion, it was found by this double-checking procedure that the

highest TAPENADE optimisation level gave erroneous re-

sults. By reducing the optimisation, the correctness of the

code could be directly proven.

4 Parameter impact

Data assimilation as a branch of inverse modelling seeks to

optimise initial values, such as of soil humidity and temper-

ature in this study. It is tacitly assumed that these parameters

are both insufficiently known and of high impact on the fore-

cast skill. On the other hand, all other parameters are consid-

ered as sufficiently well known. However, in real cases this

is often not true and significant model biases can be intro-

duced. For the core differential equations of CLM, impor-

tant parameters in Eqs. (7) and (8) include soil heat capac-

ity, thermal conductivity k, hydraulic conductivity λ and soil

water or capillary potential 9, which are often coupled by

soil classification with typical values. Further, the local net

effect of sources and sinks of water, the latter mostly bound-

ary conditions like precipitation, evaporation, ground water

level variation, vegetation states and their impact, and hori-

zontal run-off can be difficult to observe and determine. In

principle, all these parameters can be estimated by inverse

modelling, given a first guess estimate of reasonably good

quality, that is, the validity of the respective tangent-linear

assumption. However, a situation with multiply ill-defined

parameters will render the generalized optimisation problem

extremely ill-posed, especially if vegetation parameters and

not observed, yet highly volatile meteorological parameters

like cloud-modulated insolation and turbulence are included.

Surface albedo, in addition, will change with vegetation and

soil moisture.

A pragmatic and practical way out of this problem can

be found by test runs, where individual parameter varia-

tions exhibit parameter specific perturbation fields in the

model results. These exercises are especially valuable when

timescales of error sources involved are strictly different. As

an example, the modified soil heat conductivity exhibits dis-

tinct amplitudes of heat during a diurnal cycle, provided sur-

face forcing engenders a strong enough signal.

A statistical approach to identify a sufficiently consis-

tent analysis is given by assimilation diagnostics (Talagrand,

2010), most prominently by the cost function, normalised

by the number of observations p, which is χ2 = J (x0)/p =

1/2. Degradations by biased parameters are readily visible

in sequences of variational data assimilation results, where

a zigzag-like time series emerges, following the chain of data

assimilation intervals. Upon redefinition of related parame-

ters, this feature reduces significantly. In this study, several

test runs have been performed with moderately varied soil

parameters and surface albedo. The best parameter setting

was chosen for the assimilation runs. This procedure reduces

model biases, though this basic method cannot deliver opti-

mised parameters like a data assimilation algorithm.

To illustrate the importance of well-defined soil proper-

ties, we show results for two assimilation runs with differ-

ent soil parameters. The assimilation included soil tempera-

ture and soil moisture measurements at the station Selhausen,

which is located close to the station Merken and has a similar

www.geosci-model-dev.net/7/1025/2014/ Geosci. Model Dev., 7, 1025–1036, 2014
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Figure 1. Soil temperature in Selhausen for 15 to 18 July 2007 at 45 cm depth. The black dashed curve shows the control run, the black solid

curve shows the CLM forecast based on the analysis of the previous day, while the blue curve depicts the analysis. Measurement values are

shown as a red line. The left panel shows results for the original soil composition, containing 13% sand and 17% clay. The right panel shows

the respective results for a soil containing 5% sand and 25% clay.

measurement setup (see Sect. 5). The simulation setup was

also similar to the assimilation for the station Merken de-

scribed in Sect. 5. In a first assimilation run, we used the soil

type that was given in the description of the measurements,

namely silt loamwith 13% sand and 17% clay. The result for

the soil temperature at 45 cm depth of the first run is shown

in the left panel of Fig. 1. It is visible that the soil tempera-

ture is clearly overestimated in the first guess. The analysis

of the soil temperature is of the same order of magnitude as

the observations, but there are significant discontinuities vis-

ible at the ends of the assimilation intervals. In a second run,

we changed the soil properties to 5% sand and 25% clay,

which constitutes a finer soil texture but is still classified

as silt loam. Using the finer soil texture, the background is

closer to the observations of soil temperature at 45 cm depth,

and the discontinuities in the analysis are smaller than in the

first run (right panel of Fig. 1).

5 Results

5.1 Idealised experiments

This section presents results from experiments with virtual

measurements in an idealised environment. These experi-

ments examine the assimilation algorithm in different config-

urations to expose its potential and limitations. In this way,

the impact of changes in single parameters can be investi-

gated without secondary effects.

A synthetic meteorology is used, which represents a day in

June at mid-latitude (say 51◦ N) under clear sky conditions.

For diurnal variations of solar radiation R and temperature

T , the sine functions

R(t) = aR sin
4(πt) (11)

and

T (t) = T0+ aT sin
4(πt), (12)

respectively, are used. Here, t denotes time in days. The

amplitudes are set to aR = 700Wm−2 for insolation and

aT = 10K for temperature. T0 is set to 290K. A constant

breeze of 2m s−1 and a constant atmospheric humidity of

0.01 kg kg−1 are assumed.

All soil levels hold the same soil texture. The chosen soil

type is loam, containing 40% sand and 25% clay. At the be-

ginning of an assimilation interval, the relative humidity of

the soil is set to the uniform value of 70% in all soil levels.

The soil is treated as bare, that is, there is no vegetation. This

setup follows Schwinger et al. (2010), who performed sensi-

tivity studies using the tangent-linear version of the CLM.

The experiments presented in this section contain the fol-

lowing steps: first, a forward run of the CLM is performed,

which will be called background run or first guess in the

following. Then, virtual measurements are defined, which

markedly differ from the background run. After this, an as-

similation run is performed and the resulting analysis is com-

pared to the virtual observations and the background run. Er-

ror (co)variances in the cost function are considered to be

similar for background and observations. For this reason, the

impact of the observations on the analysis is as large as the

impact of the background, which will be easily testable by

an analysis right in the middle between background and vir-

tual measurements. In the following, several experiments are

discussed.

5.1.1 Assimilation of synthetic measurements

A first test is performed, aiming to exploit the potential of

4D-var to provide balanced analyses – that is, that no or only

marginal disturbances or spin-up effects occur in the phase

space evolution. In terms of dynamic systems theory par-

lance, this implies adherence to the slow or central manifold

in phase space. In Fig. 2 the assimilation result for a virtual

temperature observation at 172 cm depth at the end of a 12 h

assimilation interval is shown. The analysis produces a good
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Figure 2. Assimilation of a virtual soil temperature observation in

soil level 9 (172 cm depth) at the end of an assimilation interval of

12 h. The black curve shows the background result, the dotted black

lines indicate the background error, and the blue dashed line shows

the analysis. The observation is displayed in red.

result, in between the observation and the background, with-

out any spin-up effects.

Other experiments are performed with soil temperature

and soil moisture measurements in different environments

(not shown). Single parameters, such as the depth of the mea-

surement, initial soil moisture, length of assimilation interval

and vegetation type are changed in different experiments. To

summarise, the analysis delivers a reasonable result when-

ever the initial values of the active variables have an impact

on the measured value. This is the case for soil temperature

and soil moisture measurements in deep soil layers, and also

in upper soil layers in the case of dense vegetation or shorter

assimilation intervals.

5.1.2 Interaction of soil temperature and soil moisture

This section explains how different active variables in the as-

similation system interact with each other. As an example, it

is shown that a measurement of elevated soil temperature in-

fluences soil moisture content. The analysis, with a changed

soil moisture content, is able to better represent the measured

temperature.

In this experiment, virtual measurements of soil temper-

ature down to 50 cm soil depth are assumed. The mea-

surement, at the end of the assimilation interval (06:00–

18:00UTC), is set to a temperature that is 3K above the re-

spective simulated temperature in soil layers 1–7. The rela-

tive humidity of the soil is 50%. The vegetation type selected

is corn.

Figure 3 shows the time evolution of the soil temperature

profile. The left panel displays the result of the background

Table 2. Error estimates in the assimilation run for measurement

site Merken.

Soil moisture Soil temperature

Background 8 vol.% 2K

Observations 4 vol.% 0.5K

run and the right panel presents the analysis. To increase visi-

bility, every soil layer is plotted with the same vertical extent,

whereas the thickness of the levels in the simulation is differ-

ent (see Table 1).

The upper soil layers show a pronounced diurnal temper-

ature cycle of up to approximately 10 ◦C in both the back-

ground and the analysis run. The separated bars on the right-

hand side of each panel in Fig. 3 depict the virtual tempera-

ture measurement. In the analysis, there is a stronger warm-

ing of the upper soil layers than in the first guess. Accord-

ingly, the temperatures of the analysis lie in between the mea-

surement and the background. It is noticeable that the initial

values of soil temperature have not changed much in the anal-

ysis.

Figure 4 shows the corresponding profiles of soil mois-

ture. The left panel displays the volumetric soil moisture of

the background simulation. At the beginning, soil moisture

is constant in all soil layers. During the day, the upper soil

layers become dryer. This process starts first in the upper

soil layers and is most pronounced there. In the analysis,

shown on the right-hand side, the initial values are changed

compared to the background run. The upper soil layers are

dryer than in the first guess. This causes lower evaporation

rates at the surface. Thus, higher surface soil temperatures

are achieved in the analysis by changing initial soil mois-

ture values. It should be noted that the assimilation of initial

soil temperature only would not significantly improve the fit

to the measurements, since the surface temperature cycle in

this specific case is controlled by the balance between ab-

sorbed solar radiation and latent and sensible heat fluxes. In

this set-up the assimilation algorithm changes this balance by

changing the initial soil moisture values.

5.2 Assimilation of soil temperature and soil moisture

observations

This section presents results obtained from assimilation of

real soil temperature and soil moisture measurements. It is

investigated to what extent the assimilation is able to improve

the model result of these variables. Section 5.2.3 shows the

influence of the assimilation on surface heat fluxes.

5.2.1 Setup

The measurements are taken in Merken (Germany, 50◦48′ N,

6◦24′ E) in summer 2009 during the FLUXPAT cam-

paign. Graf et al. (2010) present the setting of a similar
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Figure 3. Time development of soil temperature profile: CLM forecast without assimilation (background run, left panel) and analysis (right

panel). In each panel, the separated columns next to the 18:00 temperature profile depict the virtual measurements in soil layers 1–7.

Figure 4. Time development of soil moisture profile: CLM forecast without assimilation (background run, left panel) and analysis (right

panel).

measurement campaign at the same location. The measure-

ment station is placed on a barley field which has been har-

vested in the middle of June. After this, it is a stubble field

until young plants begin to grow during August.

The measuring device for the soil temperature profile is

a stick with five PT100 sensors at 2, 5, 10, 25 and 50 cm

depth. Soil moisture is measured with two CS616 water con-

tent reflectometers, which measure soil moisture in parallel

at 3 cm depth. All observations at this station are available

every 10min.

For this study, the CLM is run in offline mode. The mete-

orological input data is taken from high-resolution 24 h fore-

casts of theWeather Research and Forecasting (WRF) model,

version 3.1 (Skamarock, 2008). The model domain consists

of 109× 119 grid boxes and covers an area surrounding the

measurement station (50◦12′–51◦24′ N, 5◦36′–7◦12′ E). For

both models, WRF and CLM, the same horizontal grid struc-

ture with a resolution of 0.01◦ in the north–south direction

and 0.015◦ in the west–east direction is used. This corre-

sponds to a horizontal resolution of about 1km× 1km.

The CLM time step is 30min. All measurements taken on

the full hour or half hour are included in the assimilation. The

assumed errors for measurements and background informa-

tion are listed in Table 2.

The simulation is run from June 2009 to August 2009. The

CLM simulates the soil state in one single column of the

model grid, where the measurement site is located. The as-

similation interval comprises 24 h and starts at 00:00UTC.

Parameters for soil texture were adjusted as described in

Sect. 4. For comparison, CLM is first run without data

assimilation over the whole simulation period. This run will

be referred to as the control run in the following.

5.2.2 Assimilation based analysis

In August 2009, the barley had already been harvested at

Merken, but new plants had regerminated from lost grain.

The assimilation results for soil temperature at 5 cm depth

are illustrated in Fig. 5. At 5 cm depth, CLM first guess sim-

ulates soil temperatures which are too high. In the assimila-

tion, these values can be significantly improved, particularly

the representation of the diurnal cycle. During two days at

the end of the month analysis temperatures are 1–2K higher

than the measurements. On the other days, the differences

between the analysis and the observations are small in terms

of the assumed observational error of 0.5K.

At 50 cm depth, the measurements show lower tempera-

tures than the CLM control run (see Fig. 6). The difference

is approximately 2–3K. The analysis is more consistent with

the observations. The maximum difference of the analysis

and the measurements is around 0.5K, in most cases lower.

There are discontinuities visible at the beginning of the as-

similation intervals, which suggests that the model is not

yet able to properly reproduce the real situation, and the as-

similation algorithm has to correct these differences in ev-

ery assimilation interval, indicating remaining deficiencies of

model parameters.

In Fig. 7 the soil moisture at 3 cm depth is shown. In the

control run, the soil moisture is clearly underestimated by the

model. In the background run, based on the analysis of the

Geosci. Model Dev., 7, 1025–1036, 2014 www.geosci-model-dev.net/7/1025/2014/



C. M. Hoppe et al.: A variational data assimilation system for the CLM 1033

Te
m

p
e

ra
tu

re
 [

°C
]

Time

Figure 5. Soil temperature in Merken in August 2009 at 5 cm depth. The black dashed curve shows the control run, the black solid curve

shows the CLM forecast based on the analysis of the previous day, while the blue curve depicts the analysis. Measurement values are shown

as a red line.

Soil temperature in 50cm depth in Merken August 2009
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Figure 6. Soil temperature in Merken in August 2009 at 50 cm depth. Colours are as in Fig. 5.

day before, as well as in the analysis, the CLM simulation

is in better agreement with the observations. The difference

is in most cases lower than the assumed observational error

of 4%. In the analysis, there are also discontinuities at the

edges of the assimilation intervals. The specific amount of

these discontinuities are highly sensible of the chosen error

estimates of soil temperature and soil moisture. If, for exam-

ple, the error of soil temperature is considered to be rather

small, then the jumps in the analysis of soil moisture become

quite large.

5.2.3 Energy fluxes

There are also measurements of energy fluxes available for

the measurement site Merken. The instruments used were

an Ultrasonic Anemometer (CSAT3, Campbell Scientific,

Logan, UT, USA)1 and a H2O/CO2 gas analyser (Li7500,

Li-Cor, Lincoln, NE, USA)2. The measurement method of

a similar measurement campaign at the same location is de-

scribed in Graf et al. (2010).

Figure 8 shows the measured and modelled sensible heat

flux at the station Merken. Flux measurements were not

included in the assimilation algorithm, which means that

the differences of background and analysis are only due

to the assimilation of soil temperature and soil moisture

1http://www.campbellsci.com/csat3
2http://www.licor.com/env/products/gas_analysis/LI-7500A/lit.

html

measurements. In Fig. 8 it is shown that in the reference run

sensible heat flux is overestimated, as visible for example on

4 and 24 August. The comparison between analysis and ob-

servations shows that the overall sensible heat flux is closer

to the observations than the background, so that the assimi-

lation can improve the simulation results.

The results for the latent heat flux are shown in Fig. 9.

There is a strong variation present in the quality of the fore-

cast. On some days the background, as well as the analysis,

fit very well with the measurements, e.g. on the 2, 8, and

13 August. In other cases, an improvement is visible in the

analysis, as for example on 27 and 28 August. In the case

of direct solar insolation on nearly bare soil the latent heat

flux analysis can however degrade, due to loss of hydraulic

contact of the soil skin with the lower soil layers. When the

soil skin is heated and soil humidity is fully evaporated the

upper soil layers should intercept the latent heat flux, which

is not well represented in the model. Therefore erroneously

high latent heat flux values occur on 4–7 and 15–19 August,

which are not seen in the observations.

6 Conclusions

To summarise, the results of the assimilation show that the

developed assimilation system for the CLM is able to pro-

duce reasonable results, under the condition that the param-

eters of the model are chosen correctly. Our results show

a clear improvement in the simulation of soil temperature
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Time

Figure 7. Soil moisture in Merken in August 2009 at 3 cm depth. The red dotted line displays values of a further instrument (see text).

Otherwise, colours are as in Fig. 5.

Sensible heat �ux Merken in August 2009

Time

Figure 8. Surface sensible heat flux in August 2009. The black dotted curve shows the CLM forecast without assimilation (control run) and

the blue curve shows the analysis. Measurements are plotted in red.

Latent heat �ux Merken in August 2009

Time

Figure 9. Surface latent heat flux in Merken in August 2009. Colours are as in Fig. 8.

and soil moisture. In our case study, the comparison to mea-

surements of sensible and latent heat fluxes, which were not

part of the assimilation, show improvements in simulating

the sensible heat flux. The quality of the analysis of the la-

tent heat flux depends on the weather situation.

This study shows that the quality of the simulation result

depends strongly on parameters of soil properties and vege-

tation, which are insufficiently known, and which are highly

variable in space. The atmospheric impact is also an impor-

tant factor, and a fully coupled SVAT-atmospheric 4D-var as-

similation scheme including plant parameter optimisation is

a target set-up. To obtain a good analysis, these parameters

have to be optimised systematically. This is also possible in

a data assimilation algorithm, and is scheduled for a later de-

velopment phase.

Code availability

To obtain the code, please contact C. Hoppe.
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