000202194 001__ 202194
000202194 005__ 20240711113941.0
000202194 0247_ $$2doi$$a10.1016/j.jnucmat.2014.12.034
000202194 0247_ $$2ISSN$$a0022-3115
000202194 0247_ $$2ISSN$$a1873-4820
000202194 0247_ $$2WOS$$aWOS:000358467200023
000202194 037__ $$aFZJ-2015-04483
000202194 082__ $$a530
000202194 1001_ $$0P:(DE-HGF)0$$aDouai, D.$$b0$$eCorresponding Author
000202194 245__ $$aWall conditioning for ITER: Current experimental and modeling activities
000202194 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000202194 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435739471_4626
000202194 3367_ $$2DataCite$$aOutput Types/Journal article
000202194 3367_ $$00$$2EndNote$$aJournal Article
000202194 3367_ $$2BibTeX$$aARTICLE
000202194 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000202194 3367_ $$2DRIVER$$aarticle
000202194 520__ $$aWall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET–CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.
000202194 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000202194 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000202194 7001_ $$0P:(DE-HGF)0$$aKogut, D.$$b1
000202194 7001_ $$0P:(DE-Juel1)145890$$aWauters, T.$$b2
000202194 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b3
000202194 7001_ $$0P:(DE-HGF)0$$aHagelaar, G. J. M.$$b4
000202194 7001_ $$0P:(DE-HGF)0$$aHong, S. H.$$b5
000202194 7001_ $$0P:(DE-HGF)0$$aLomas, P. J.$$b6
000202194 7001_ $$0P:(DE-Juel1)130093$$aLyssoivan, A.$$b7
000202194 7001_ $$0P:(DE-HGF)0$$aNunes, I.$$b8
000202194 7001_ $$0P:(DE-HGF)0$$aPitts, R. A.$$b9
000202194 7001_ $$0P:(DE-HGF)0$$aRohde, V.$$b10
000202194 7001_ $$0P:(DE-HGF)0$$ade Vries, P. C.$$b11
000202194 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2014.12.034$$gVol. 463, p. 150 - 156$$p150 - 156$$tJournal of nuclear materials$$v463$$x0022-3115$$y2015
000202194 8564_ $$uhttps://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.pdf$$yRestricted
000202194 8564_ $$uhttps://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.gif?subformat=icon$$xicon$$yRestricted
000202194 8564_ $$uhttps://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000202194 8564_ $$uhttps://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000202194 8564_ $$uhttps://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000202194 8564_ $$uhttps://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000202194 909CO $$ooai:juser.fz-juelich.de:202194$$pVDB
000202194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145890$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000202194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000202194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130093$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000202194 9130_ $$0G:(DE-HGF)POF2-135$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-wall interactions$$x0
000202194 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000202194 9141_ $$y2015
000202194 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000202194 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000202194 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000202194 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000202194 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000202194 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000202194 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000202194 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000202194 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000202194 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000202194 980__ $$ajournal
000202194 980__ $$aVDB
000202194 980__ $$aI:(DE-Juel1)IEK-4-20101013
000202194 980__ $$aUNRESTRICTED
000202194 981__ $$aI:(DE-Juel1)IFN-1-20101013