001     202194
005     20240711113941.0
024 7 _ |a 10.1016/j.jnucmat.2014.12.034
|2 doi
024 7 _ |a 0022-3115
|2 ISSN
024 7 _ |a 1873-4820
|2 ISSN
024 7 _ |a WOS:000358467200023
|2 WOS
037 _ _ |a FZJ-2015-04483
082 _ _ |a 530
100 1 _ |a Douai, D.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Wall conditioning for ITER: Current experimental and modeling activities
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1435739471_4626
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Wall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET–CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|x 0
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Kogut, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wauters, T.
|0 P:(DE-Juel1)145890
|b 2
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 3
700 1 _ |a Hagelaar, G. J. M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hong, S. H.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lomas, P. J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lyssoivan, A.
|0 P:(DE-Juel1)130093
|b 7
700 1 _ |a Nunes, I.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Pitts, R. A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Rohde, V.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a de Vries, P. C.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1016/j.jnucmat.2014.12.034
|g Vol. 463, p. 150 - 156
|0 PERI:(DE-600)2001279-2
|p 150 - 156
|t Journal of nuclear materials
|v 463
|y 2015
|x 0022-3115
856 4 _ |u https://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/202194/files/1-s2.0-S0022311514009763-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:202194
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145890
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130093
913 0 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF2-130
|0 G:(DE-HGF)POF2-135
|2 G:(DE-HGF)POF2-100
|v Plasma-wall interactions
|x 0
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21